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Abstract

This paper examines the role of individual sorting in sectoral productivity gaps in

Indonesia between 1993 and 2000, using the Indonesia Family Life Survey (IFLS). The

analysis shows that sector-wide technology differences account for most of the observed

gap, while individual sorting based on unobserved comparative advantages plays only

a minor role—in contrast to prior studies that report large selection effects. Three

key contributions of this paper are: First, it demonstrates that the aggregate effect

of sorting consists of two components—the extra return to unobserved comparative

advantage and the difference in mean latent abilities across sectors—whereas earlier

studies emphasize only the former. Second, it applies a correlated random coefficient

framework to study productivity gaps, estimating the return component without im-

posing distributional assumptions. Third, it maps the resulting selection terms to the

classical Roy model, linking alternative approaches. The findings suggest that improv-

ing agricultural technology and infrastructure, rather than labor reallocation policies

such as vocational training, is key to narrowing productivity gaps in 1990s Indonesia.

1 Introduction

Agricultural productivity in low-income countries lags significantly further behind that of

high-income countries, compared to their non-agricultural sectors. To make matters worse,
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the majority of people in low-income countries work in this less productive sector. Hence,

agricultural productivity plays a crucial role in explaining the massive cross-country income

gaps (Gollin et al., 2002; Caselli, 2005; Chanda and Dalgaard, 2008; Restuccia et al., 2008).

Poor countries exhibit a pronounced and persistent productivity disparity between the agri-

culture and non-agriculture sectors, posing a fundamental development challenge (McMillan

and Rodrik, 2014). Implementing effective pro-growth policies requires a deep understanding

of the mechanisms underlying the substantial productivity gap between the agricultural and

non-agricultural sectors in developing countries.

The structural transformation literature, pioneered by Lewis’ seminal analysis (1954) of

the dual economy and inter-sectoral labour movements, has since adopted the term, Agri-

cultural Productivity Gap (APG)—the ratio of value-added per worker in non-agriculture

relative to agriculture, to quantify sectoral productivity gap (Gollin et al., 2014). In what

follows, I use the terms “sectoral productivity gap” and “APG” interchangeably.

In this body of literature, two prominent potential explanations for substantial APG in

developing countries are: One is due to a misallocation of resources, such as land, labour,

capital, or investments (Restuccia et al., 2008; Bryan et al., 2014; Munshi and Rosenzweig,

2016; Alvarez-Cuadrado et al., 2017; Lagakos, 2020). The alternative hypothesis posits that

potential causes involve agents sorting into sectors based on their comparative advantages.

Under the condition that comparative and absolute advantages are positively correlated,

individual sorting could amplify the sectoral productivity gaps in poor countries (Lagakos

and Waugh, 2013; Alvarez-Cuadrado et al., 2020).

This paper examines how much individual selection based on unobserved comparative

advantage contributes to sectoral productivity gaps in Indonesia, a low-income country that

underwent considerable structural transformation between 1993 and 2014. The answer to

this question has far-reaching policy implications. If most of the observed gap reflects ef-

ficient sorting, then the disparities largely mirror workers’ latent abilities and policy levers

are limited. But if sector-wide technology is the primary driver, then improvements in seeds,

irrigation, or infrastructure—as demonstrated by the Green Revolution in Asia during the

1960s–1980s—can dramatically narrow productivity gaps without changing who works in

agriculture (Evenson and Gollin, 2003; David and Otsuka, 1994). Conversely, misdiagnosing
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the role of selection risks wasted effort: in Sub-Saharan Africa, large-scale vocational training

and microenterprise programs in the 1990s–2000s often assumed farmers could seamlessly

transition into non-farm jobs and succeed, yet many fell short, one possible reason being

that skill differences between sectors were underestimated (Blattman and Ralston, 2015;

McKenzie, 2017). Understanding how much individual sorting contributes to APG is there-

fore central to designing effective strategies for structural transformation and sustainable

growth in low-income countries.

A large literature, rooted in the Roy model, studies how occupational choice affects

individual earnings and defines the selection effect as the average extra return to unobserved

abilities. This paper follows that convention. My research question, however, is different:

how much does individual sorting contribute to the sectoral productivity gap? When the

outcome of interest shifts from individual to sectoral earnings, aggregating to the sector level

introduces an additional component. At the aggregate level, the impact of sorting has two

parts: (1) the selection effect—the extra return to unobserved abilities—and (2) the average

difference in unobserved abilities between workers across sectors. Only when the two groups

are alike on average does the selection effect alone capture the full contribution of sorting to

the APG. This paper builds a framework to quantify both the selection effect and the group

differences in latent abilities, answering the research question posited.

Having laid out the two components of sorting’s sectoral contribution, I now examine the

first component, selection effect. Since Lagakos and Waugh’s (2013) self-selection hypothe-

sis, a growing literature has sought to measure how much this effect explains productivity

gaps in developing countries (Lagakos and Waugh, 2013; Pulido and Świecki, 2019; Alvarez,

2020; Lagakos et al., 2020; Alvarez-Cuadrado et al., 2020; Adamopoulos et al., 2022). These

studies consistently report that selection is important, but the estimated magnitudes vary

widely. This variation reflects the difficulty of the task: estimates depend crucially on

how heterogeneity in latent abilities is modeled and how the endogeneity of sector choice

is addressed. The stakes are high, because mismeasuring selection risks misdirecting pol-

icy—leading governments to focus on moving workers across sectors when the real constraint

may be technology, or vice versa.

In the APG literature, two prevailing approaches stand out when measuring selection on
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sectoral productivity gap. The first applies two-way fixed effects to panel data, attribut-

ing the gap reduction after controlling for individual effects to selection. But this masks

comparative advantage, since all time-invariant traits—including those irrelevant to sector

choice—are swept into the fixed effect, leading to upward bias. The second imposes a dis-

tribution for unobserved abilities (e.g. joint normal or Fréchet) and recovers a closed-form

parameter in the spirit of Roy model (1951) framework. While tractable, these strong as-

sumptions rarely have empirical support (Heckman and Honore, 1990), and they heavily

influence estimated magnitudes.

To address these limitations, this paper adopts a Correlated Random Coefficient (CRC)

framework, following Suri (2011), and applies it to the context of sectoral choice and produc-

tivity gaps. The CRC approach models unobserved abilities as time-invariant and sector-

specific, which distinguishes individual fixed effects that matter for sectoral choice from those

that do not. By exploiting the information embedded in individuals’ sectoral choice histo-

ries, this method reveals their latent comparative advantages and recovers the selection effect

without relying on strong distributional assumptions about unobserved heterogeneity.

The estimation proceeds in two stages. First, I estimate the reduced-form empirical model

using Seemingly Unrelated Regressions (SUR). Second, I recover the structural parameters

with a Minimum Distance Estimator (MDE). Both steps are implemented in the STATA

package randcoef (Cabanillas et al., 2018).

Most of the APG literature treats the selection effect as if it fully captured the role

of sorting in productivity gaps. In practice, however, it reflects only one component: the

extra earnings workers receive when their unobserved skills are more highly rewarded in

one sector than the other. Once individual earnings are aggregated to the sector level, a

second component arises—the average difference in unobserved skills between agricultural

and non-agricultural workers. This difference shapes the observed APG unless farmers and

non-farmers are very similar on average. In that special case, the mean difference is negligible,

and the selection effect alone accounts for sorting’s contribution. But when the groups differ,

focusing only on the first component gives an incomplete and potentially misleading picture.

My framework measures both components to assess how individual sorting contributes to

APG.
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To examine these two components empirically, I use the Indonesia Family Life Survey

(IFLS) (Frankerberg et al., 1995), a nationally representative panel dataset spanning five

waves from 1993 to 2014 and covering about 80 percent of the population. During this

period, Indonesia moved from low- to lower-middle-income status, with per capita incomes

roughly doubling and the share of agricultural employment falling by about 12 percent. The

IFLS is particularly well suited for studying sorting and productivity gaps because of its rich

panel structure, which tracks both sector choices and earnings. In this paper, I focus on the

first three waves (1993–2000), before Indonesia’s sweeping political and institutional changes

after 2000, to provide a clean setting for analyzing sectoral productivity gaps.

Applying this framework to the first three waves of the IFLS (1993–2000), I find that

Indonesia exhibited large sectoral productivity gaps, but individual sorting played only a

limited role in explaining them. Roughly 80 percent of workers remained in their initial

sectors, and among those who switched, the estimated selection effect was statistically in-

significant. The average difference in unobserved abilities between farmers and non-farmers

accounted for only about 2 percent of the gap, while sector-wide technology differences ex-

plained most of the disparity. These findings stand in contrast to other studies using the

same data that report large selection effects, underscoring how methodological choices shape

conclusions about the sources of APG.

This study advances the APG literature in three ways. First, it establishes that the

sectoral impact of individual sorting has two components: the extra return to unobserved

comparative advantage and the average difference in latent skills between workers across

sectors. Earlier studies treat only the former as the effect of sorting on APG, overlooking

the latter. Second, it adapts Suri’s (2011) correlated random coefficient framework to the

study of sectoral productivity gaps by redefining sector-specific abilities so the model can be

applied in this context. In doing so, the framework separates abilities that influence sectoral

choice from those that do not. By exploiting workers’ sectoral choice histories, it then

recovers the selection effect without relying on restrictive distributional assumptions. Third,

it maps the resulting terms back to the classic Roy model, making the connection between

alternative approaches explicit and situating the findings within the broader self-selection

literature.
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The remainder of the paper proceeds as follows. Section 2 reviews the related literature

on sectoral productivity gaps and self-selection. Section 3 defines the measurement of APG

and develops the empirical framework based on Suri’s (2011) correlated random coefficient

model, linking it to the classic Roy framework. Section 4 sets out the identification strategy

and estimation procedures. Section 5 introduces the dataset, provides descriptive evidence,

and presents baseline results for the first three IFLS waves. Section 6 discusses the findings

in light of the literature. Section 7 concludes.

2 Literature Review

This section situates the paper within the literature on sectoral productivity gaps (APG),

with particular attention to studies examining the role of individual self-selection. Two domi-

nant hypotheses explain persistent productivity gaps in low-income countries: misallocation

of resources and sorting based on comparative advantage. While not mutually exclusive,

distinguishing their relative importance is critical for interpreting observed gaps. If misal-

location dominates, then the APG signals inefficiencies that policy can alleviate. If sorting

dominates, then much of the gap reflects workers’ latent abilities, and welfare-enhancing

interventions play a smaller role.

The review proceeds in three steps. First, it discusses the origins of the APG literature

and the theoretical motivation for focusing on selection. Second, it synthesizes empirical

evidence on the magnitude of selection effects, highlighting the wide range of reported esti-

mates. Third, it identifies the limitations of prevailing empirical approaches, motivating the

need for the alternative framework developed in this paper.

2.1 APG and the Selection Hypothesis

The study of sectoral productivity gaps is rooted in classic theories of structural transfor-

mation and growth (Lewis, 1954; Kuznets, 1971). A consistent empirical finding is that

agricultural productivity lags far behind non-agricultural productivity in poor countries,

with gaps far larger than those observed in rich economies (Gollin et al., 2002; Restuccia

et al., 2008; Gollin et al., 2014; McMillan and Rodrik, 2014). Because low-income countries
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employ a high share of workers in agriculture, this productivity disadvantage contributes

directly to cross-country income inequality.

Early critics questioned whether such large gaps merely reflected measurement error

in national accounts. Gollin, Lagakos, and Waugh (2014), however, demonstrated using

household survey data that the APG remains large even with microdata, dispelling this

concern. Herrendorf and Schoellman (2018) further showed, across 42 censuses in 13 countries

over seven decades, that poor countries consistently exhibit large wage differences between

sectors. Together, these studies confirmed that APGs are real, persistent, and central to

understanding income disparities.

Two mechanisms have been emphasized. Misallocation arises when barriers to mobil-

ity or frictions in input use prevent efficient allocation of workers and resources (Restuccia

et al., 2008; Munshi and Rosenzweig, 2016; Bryan et al., 2014). Selection, by contrast,

highlights that individuals choose sectors based on comparative advantage. In Roy’s (1951)

framework, Lagakos and Waugh (2013) formalized this hypothesis by combining comparative

advantage with subsistence food requirements: in low-productivity economies, many workers

must remain in agriculture, creating large dispersion in productivity among farmers, while in

high-productivity economies only highly skilled farmers remain, raising average productivity.

When comparative and absolute advantage are positively correlated, sorting amplifies the

APG. Later work noted that selection and misallocation likely coexist, and that the corre-

lation between comparative and absolute advantage may be weak or even negative in poor

countries (Alvarez-Cuadrado et al., 2020; Lagakos, 2020).

Thus, the selection hypothesis provides a compelling microfoundation for observed APGs,

but the empirical challenge lies in measuring its magnitude.

2.2 Empirical Evidence on Selection and APG

Since Lagakos and Waugh, a growing literature has attempted to quantify how much of the

APG is attributable to individual sorting. Reported magnitudes, however, vary widely—from

one-third of the observed gap to nearly all of it—depending on the empirical strategy and

country context.

Structural calibration approaches. Several studies estimate reduced-form relationships
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in microdata and use them to calibrate macro models. Lagakos and Waugh (2013) assumed

Fréchet-distributed abilities and argued that selection strongly amplifies gaps, even in the

absence of frictions. Pulido and Swiecki (2019), using IFLS data, imposed joint normality

and concluded that selection explains 45–70 percent of the APG, depending on substitution

elasticities. Both emphasize the puzzle of two-way sector transitions despite large observed

wage gaps, interpreting it as evidence of misallocation.

Herrendorf and Schoellman (2018) and Alvarez (2020) relaxed functional form assump-

tions. Herrendorf and Schoellman used multi-country census data to model wage returns

and found sorting important but not dominant relative to frictions. Alvarez, using Brazilian

panel data, compared wages of switchers and multi-sector workers: average gaps were nearly

50 log points, but within-individual wage gains from switching were small (4–9 log points),

implying limited misallocation and a large role for sorting.

Gai et al. (2021) and Lagakos et al. (2020) examined rural–urban migration. Both

concluded that migration costs matter, but disagreed on magnitudes: in some contexts

misallocation dominated, in others selection explained more. Adamopoulos et al. (2022),

studying rural China, emphasized land and capital misallocation, but found that sorting

further amplified its effects.

Reduced-form panel approaches. Hamory et al. (2021) applied two-way fixed effects

to panel data in Kenya and Indonesia, reporting that 67–92 percent of observed APGs

disappear once individual effects are controlled for. Their interpretation is that most of the

APG reflects sorting.

Taken together, this empirical literature reaches a consistent qualitative conclusion—that

selection matters—but reported magnitudes differ enormously, from 32 percent to over 90

percent. This divergence reflects the deep methodological challenges of modelling hetero-

geneity and endogeneity in sectoral choice.

2.3 Limitations of Prevailing Approaches

In the APG literature, the “selection effect” has generally been treated as if it were identical

to the classical Roy model’s notion of selection on individual earnings. This framing overlooks

an important distinction: in the Roy setting, the outcome of interest is an individual’s wage,
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whereas in the APG contex,t the outcome is the sectoral earnings gap. By simply equating

the two, existing studies implicitly treat the individual-level return component as if it fully

captures sorting’s role in sectoral gaps, thereby overlooking the possibility that group-average

differences in latent abilities also matter.

Regarding the selection effect, the empirical strategies used to estimate it fall into two

dominant approaches. The first is to apply two-way fixed effects (TWFE) to panel data,

interpreting the gap reduction after controlling for individual effects as the effect of sorting.

While appealing for its simplicity, this method masks comparative advantage: all time-

invariant traits—including those irrelevant to sector choice—are absorbed into the fixed

effect, leading to upwardly biased estimates of selection.

The second is to impose a distributional form on unobserved abilities, most often assum-

ing joint normality or Fréchet, and then recover a closed-form selection parameter in the

spirit of Roy. This structural approach is tractable but fragile. Its results depend heav-

ily on functional-form assumptions that lack strong empirical support in either labour or

development economics, as noted by Heckman and Honore (1990).

Together, these limitations leave the magnitude of the selection effect highly sensitive

to methodological choices. In practice, existing studies report wide-ranging estimates, all

significant but inconsistent in size, precisely because they conflate individual-level and ag-

gregate concepts of selection and lean on restrictive assumptions to handle heterogeneity

and endogeneity. To address these challenges, this paper adapts the correlated random co-

efficient framework of Suri (2011), which avoids parametric assumptions about unobserved

heterogeneity and better isolates the sector-relevant component of individual abilities.

A fuller description of Suri’s original CRC framework and its application to hybrid seed

adoption in Kenya is provided in Appendix A, for readers seeking additional background

before turning to this paper’s adaptation to the APG setting.

3 Empirical Model

This section outlines the empirical model of this paper by extending the approach in Suri

(2011) to the APG literature. I begin by modelling individual earnings by using the Mince-
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rian representation for human capital. Building on this foundation, I follow the method in

Lemieux (1998) and Suri (2011) to incorporate heterogeneous latent skills across sectors into

this model, where absolute and comparative advantages are defined. Next, I put together the

main empirical model that enables the measurement of how self-selection affects individual

earnings. Finally, I illustrate how to draw the impact of individual selection on the sectoral

productivity gap through aggregation.

To anchor the selection effect of my model, I further map it to the types of selection

proposed by Borjas (1987) in the classic Roy’s model framework and discuss the selection

effect in the adopted model in Appendix B.

3.1 Model Setup

As individual sorting is based on comparing the potential earnings in each sector, the starting

point is to model how the choice of sector affects an individual’s potential earnings. In an

economy, an individual i at time t can choose to work in one of two sectors: j ∈ {n, a},

where n refers to the non-agricultural sector and a to the agricultural sector. An individual’s

potential earnings in each sector at each period are determined by the sector productivity,

Aj
t , and her own human capital, hj

it, as expressed in equations (1) and (2). In these two

equations, P j
t represents the price level at each sector j, which is the returns to sector

technology level.

W n
it = P n

t A
n
t h

n
it (1)

W a
it = P a

t A
a
th

a
it (2)

Following Mincer regression, the human capital hj
it can be expressed as an exponential

function of observed and unobserved characteristics, see equations (3) and (4), where Xit is

a vector of observed characteristics endowed by individual i at time t, and U j
it is a vector of

individual i’s unobservable in sector j at time t.

hn
it = exp(Xitγ

n + Un
it) (3)

ha
it = exp(Xitγ

a + Ua
it) (4)
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Substitute equations (3) and (4) into (1) and (2), the individual potential earnings in

each sector j and time t can be represented as equations (5) and (6).

W n
it = P n

t A
n
t exp(Xitγ

n + Un
it) (5)

W a
it = P a

t A
a
t exp(Xitγ

a + Ua
it) (6)

Taking logs, I can obtain equations (7) and (8), where the lower cases represent the

logarithmic terms.

wn
it = pnt + ant︸ ︷︷ ︸

=δnt

+Xitγ
n + Un

it (7)

wa
it = pat + aat︸ ︷︷ ︸

=δat

+Xitγ
a + Ua

it (8)

In equations (7) and (8), pjt represents the price for each sector j at time t, and ajt stands

for average productivity for sector j at time t. Together, they represent the returns from

the sector-wide productivity at time t for sector j, denoted as δjt . Hence, rewrite potential

earnings for each sector as equations (9) and (10).

wn
it = δnt +Xitγ

n + Un
it (9)

wa
it = δat +Xitγ

a + Ua
it (10)

3.2 Absolute and Comparative Advantages

Comparative advantage is the difference in an individual’s abilities between sectors. It is

the differential returns based on this comparative advantage that affect sector decisions for

economic agents. This comparative advantage comprises two parts: observed characteristics,

such as education, and unobserved abilities, such as detail-oriented attributes. The returns

to the observed characteristics are seen in the data and collected in the vector of X’s. On the

other hand, the unobserved comparative advantages, the differences in individual unobserved

abilities between the two sectors, are not recorded in the data. However, individuals know

their own latent skills and internalize this information when deciding which sector to enter.

Thus, selection bias arises if this unobserved comparative advantage is not taken into account.
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Therefore, I will introduce more structure to the unobserved error terms, U j
it, in equa-

tions (9) and (10), reflecting the source of selection within the unobserved ability terms U j
it.

Following Lemieux (1998) and Suri (2011), decompose as in equation (11) and (12).

Un
it = θni + ξnit (11)

Ua
it = θai + ξait (12)

where θji is a time-invariant, sector-specific ability (permanent) and ξjit is an idiosyncratic

shock, which is unknown at choice, but follows a zero conditional mean (transitory). Hence,

sorting depends on the permanent vector (θni , θ
a
i ), not on ξjit, shown in equation (13):

E(Un
it − Ua

it) = θni − θai (13)

Simply put, this transitory component of the error terms does not affect individuals’

sector choices. Thus, when choosing a sector, the differences in individuals’ sector-specific

abilities will play a crucial role. Note that it is impossible to identify absolute advantages,

θni and θai , separately. Nor is it needed, as it is the difference in absolute advantages that

matters. To separate abilities that influence sector choice from those that do not, linearly

project θji on the “difference of latent abilities across sector”, θni − θai , shown as equations

(14) and (15):

θni = bn(θ
n
i − θai ) + τi (14)

θai = ba(θ
n
i − θai ) + τi (15)

where τi is a common component (orthogonal to θni −θai ) that moves productivity in both

sectors equally (e.g., work ethic) and thus does not affect sector choice. The coefficients

(bn, ba) are projection coefficients determined by the variance–covariance matrix of (θni , θ
a
i ).

1

Define the individual’s comparative advantage as equation (16)

θi ≡ ba(θ
n
i − θai ), (16)

and the selection effect parameter as equation (17)

β ≡ bn
ba
− 1. (17)

1Closed-form expressions: bn =
σ2
n−σna

σ2
n+σ2

a−2σna
and ba =

σna−σ2
n

σ2
n+σ2

a−2σna
, where σn = V ar(θni ), σa = V ar(θai ),

and σna = COV (θni , θ
a
i ).
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Then sector-specific absolution advantages can be expressed as a function of comparative

advantage and selection effect, as shown in equations (18) and (19):

θni = (1 + β)θi + τi (18)

θai = θi + τi (19)

Equations (18) and (19) are the key decompositions: (θi, β) describe the part of unob-

served ability that drives sorting (comparative advantage and its sectoral loading), while

τi is the sector-irrelevant component. This is precisely where TWFE regressions confound

selection: they absorb both θi and τi into a single fixed effect, attributing common, sector-

irrelevant traits to selection, such as hard work.

Hence, conditional on observables, sector choice is governed by the differential return to

θi (the comparative advantage component), with loading (1+ β) in non-agriculture and 1 in

agriculture. The common component τi cancels in the choice comparison and is irrelevant

for sorting.

In this formulation, the structural parameter β summarizes how strongly unobserved

comparative advantage is rewarded differentially across sectors after netting out the corre-

lation between sectoral abilities. Positive β indicates that the nonagricultural sector loads

more on the relevant ability dispersion than agriculture; negative β indicates the opposite.

In the Appendix B, I formally map the selection effect β to types of selection in the classic

Roy model. When β > 0, individuals are positively selected—drawn from the upper tail in

agriculture and landing in the upper tail of non-agriculture. When −1 < β < 0, the sorting

is negative, as workers come from the lower tail in both sectors. When β < −1, a ‘refugee’

case arises: workers below average in agriculture sort into non-agriculture but earn above its

mean. Finally, when β = −1, switchers earn exactly the sectoral mean in non-agriculture, a

case absent in Borjas. Full algebra, the formal conditions, and the side-by-side comparison

with Borjas’s are in Appendix C.

Essentially, the selection effect and unobserved comparative advantages formulated by

Lemieux (1998) capture the equivalent selection effect from unobserved heterogeneity that

affects individuals’ choices, as modelled in the classic Roy choice framework. The difference is

that this formulation allows for the flexibility to estimate underlying unobserved comparative
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advantages avoiding distributional assumption.

3.3 Main Empirical Model

After the discussion on β, let’s go back to the empirical model used in this paper. Building on

equations (18)-(19), which decompose latent ability into comparative advantage and selection

effect, I substitute into the potential earnings framework (equations (9) and (10)). I can

rewrite the individual’s log potential earnings at time t for each sector j in equations (20)

and (21).

wn
it = δnt + (1 + β)θi + τi +Xitγ

n + ξnit (20)

wa
it = δat + θi + τi +Xitγ

a + ξait (21)

Let Dit be a dummy variable, taking the value one if an individual i chooses the pri-

mary job in the nonagricultural sector at time t and zero otherwise. Then, I can write the

individual’s log earnings as equation (22).

wit = Ditw
n
it + (1−Dit)w

a
it (22)

where

Dit =

1 non-agricultural sector

0 agricultural sector

Then, substitute equations (20) and (21) in (22) to obtain equation (23).

wit = δat + (δnt − δat )Dit

+ θi + βθiDit +Xitγ
a +Xit(γ

n − γa)Dit + τi + ϵit (23)

where

ϵit = Ditξ
n
it + (1−Dit)ξ

a
it (24)

Equation (23) is the main empirical model in this paper. I am interested in estimating the

parameter β, the selection effect of comparative advantages, and recovering the distribution

of comparative advantages θi. As the fourth term’s coefficient (βθi) in equation (23) contains

the unobserved random variable θi; moreover, θi is correlated to the sectoral choices Dit,
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hence, this is a correlated random coefficient (CRC) model. In this formulation, individual

comparative advantage (θi) is explicitly defined as the individual deviation from the average

sector productivity. If an individual works in the agricultural sector, sector-wide productivity

is δat , and each individual’s comparative advantage, θi, expresses how each individual is more

productive compared to the average productivity in the sector. If the nonagricultural sector

is chosen, the sector-wide productivity is represented by δat +(δnt − δat ), and each individual’s

productivity deviation from the sector mean is (1 + β)θi.

By assuming time-invariant sector-specific unobserved abilities, this formulation combines

Leumieux’s decomposition of absolute advantages. It allows for the modelling of compar-

ative advantages as the difference between absolute advantages across sectors, scaled by

the covariance-adjusted spread, while distinguishing which unobserved abilities are relevant

to sector choices. This empirical framework effectively addresses the two core challenges

identified in the Literature Review section— heterogeneity and endogeneity. Moreover, this

formulation of comparative advantages, aligning with Roy’s model choice setting, is better

equipped to estimate individual sorting than a TWFE estimator or one that controls for

fixed effects, as reviewed in the previous section, and allows for the estimation of selection

effects without imposing functional assumptions on latent abilities.

3.4 Individual Sorting and Agricultural Productivity Gap (APG)

The objective of the main empirical model, as described in equation (23), is to estimate the

structural parameter, the selection effect β, without imposing any distributional assumptions

on latent skills. In the estimation section, I will describe how to obtain β without distribu-

tional assumptions. Now, suppose β is estimated from the data. What β measures is the

extent to which individual sorting based on comparative advantages affects their earnings.

Therefore, an aggregation is necessary to provide an answer to the research question posed

in this paper: how much individual sorting affects sectoral productivity gaps?

Consider an economy with two sectors: agriculture and non-agriculture, both of which
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are perfectly competitive. The output in each sector is given by equations (25) and (26).

Yn = AnHn (25)

Ya = AaHa (26)

where Yj represents the sector aggregate output, Aj is the sector-specific efficiency, Hj is the

efficient labour in each sector. Furthermore, the efficient labour Hj is the product of sector-

specific human capital, hj, and the total number of workers Lj in each sector j, represented

by equations (27) and (28).

Hn = hnLn (27)

Ha = haLa (28)

Following the agricultural productivity gap (APG) defined by Gollin et al. (2014), under

the assumption of a perfectly competitive labour and goods market in both sectors, the wage

in each sector equals the marginal value product of labour, and it also equals the average

value of output per labour in each sector at equilibrium. Let Wj be the wage in the sector

j, and Pj be the price of good j. In equilibrium, APG–the ratio of value-added (VA) per

worker between sectors j—can be expressed as the wage ratio at the sector level. Wn

Wa
. See

equation (29).

PnYn/Ln

PaYa/La︸ ︷︷ ︸
=

V An/Ln
V Aa/La

≡APG

=
Wn

Wa

(29)

In the data, the difference in log earnings between sectors is APG, expressed in equation

(30). This APG can be directly calculated by differencing the mean log earnings between

two sectors, using the data.

log

(
Wn

Wa

)
= log(Wn)− log(Wa) = APG (30)

Furthermore, the APG can be decomposed into three components, shown in equation

(31): (1) APG from observed characteristics, X(γ̂n− γ̂a); (2) APG from sector-wide produc-

tivity gap, δn − δa; (3) APG from individual sorting based on the unobserved comparative
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advantages, denoted as Sθ, see equation (32).

APG = X(γ̂n − γ̂a)︸ ︷︷ ︸
APGobserved

+ δn − δa︸ ︷︷ ︸
APGδ

+Sθ (31)

Sθ = βE[θi|D = 1]︸ ︷︷ ︸
extra returns in nonag

+(E[θi|D = 1]− E[θi|D = 0])︸ ︷︷ ︸
mean diff in comparative advantages

(32)

Sθ = APG− APGobserved − APGδ (33)

Since θi is unobserved, it may not be possible to attain the mean of θi. Equation (33)

provides an alternative way to get the selection effect component in APG. As a result, the

impact of individual sorting based on comparative advantages is the share of APG from the

unobserved component, Sθ

APG
.

To recap, the main empirical model in this section explicitly models individual unobserved

comparative advantage θi as a deviation from the average productivity for each sector, ad-

dressing unobserved heterogeneity. Moreover, it formulates the absolute and comparative

advantages to allow for the estimation of the selection effect β without imposing a functional

form on latent abilities. In addition, the types of selection in this main model can be mapped

to the selection types in the classic Roy model framework.

I aim first to recover the structural parameters β and θi, and then aggregate to assess the

importance of individual selection based on the observed APG. Before getting into estimation

strategies, I will first discuss the identification of this CRC model.

4 Identification

A strict exogeneity of the composite error term, expressed in equation (34), delivers the

identification for the main estimation equation (23).

E(τi + ϵit|θi, Di1...DiT , Xi1...XiT ) = 0 (34)

As τi represents individual i’s unobserved abilities, regardless of sector choices, this

strict exogeneity assumption is not overly restrictive for τi. Mathematically, equations (18)

and (19) indicate that τi is removed from the comparative advantages, θi; hence, τi does not

affect the sectoral choices and other observed regressors in (23).
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The concern mainly resides in the transitory error term, ϵit. Under the assumption of

the mean independent transitory error term (ϵit), equations (20) and (21) indicate that the

sector-specific transitory shocks ξnit and ξait do not affect the individual’s sector choices. I

am now examining whether such an assumption is plausible in this setting. Importantly,

the sectoral choices occur before most transitory shocks hit the relevant sector. Assuming

that individuals are risk-neutral, in expectation, a risk-neutral agent does not consider the

unobserved sector-specific transitory shocks when choosing a sector, i.e. E(ϵit|Dit) = 0.

However, some transitory shocks could impact individuals’ realized earnings, such as

crop failure due to extreme weather conditions, which could raise concerns about the iden-

tification. This concern arises because individuals are likely to take measures to maintain

their normal income level during adverse shocks, such as switching sectors or increasing

the number of hours worked. Notably, individuals selected for their primary sector based

on comparative advantage are unlikely to respond to short-lived, sector-specific shocks by

changing sectors. This tendency to remain in the original sector is plausible for two reasons.

First, the shocks are transitory and do not justify abandoning a productivity-maximizing

allocation. Second, without retraining or skill upgrading, individuals are unlikely to achieve

higher earnings in an alternative sector that lacks a comparative advantage.

Empirical evidence from the Indonesia Family Life Survey (IFLS) supports this reason-

ing. In the first wave, respondents were asked whether they had experienced major economic

shocks in the previous five years—including events such as crop failure, business loss, house-

hold member illness, and income loss (Figure 1)—and how they coped with them (Figure 2).

The most frequently reported coping strategies were taking on additional jobs, borrowing

from or receiving transfers from relatives, using savings, and reducing expenditures. Im-

portantly, switching sectors does not appear among the recorded responses, reinforcing the

notion that individuals tend to remain in their chosen sector and absorb short-term shocks

through secondary adjustments rather than by changing their primary occupation.

If individuals choose to change their hours worked in response to temporary shocks, that

could raise concerns about identification because hours worked is one of the regressors in

the estimation equation, included in Xit. As the IFLS survey provides information on major

transitory shocks that could affect potential earnings at the household level, it is plausible to
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Figure 1

assume strict exogeneity of ϵit in equation (34) after the control for such transitory shocks.

Regarding measures to cope with shocks, this information was only collected in the first

round of surveys and is not available for subsequent waves. However, the information in

the first wave provides clear empirical evidence that transitory shocks do not affect sector

switching in the IFLS dataset. Hence, the exogenous shocks that cause individuals to switch

sectors must be cost-related, such as making the pursuit of the alternative sector cheaper.

For instance, as more factories are established in villages, the cost of securing a stable wage

in the manufacturing sector is substantially reduced, and some people may be persuaded to

switch sectors.

In sum, strict exogeneity of the composite error term is justified here on two grounds:

(i) τi is orthogonal to choices and regressors by construction, and (ii) ϵit is plausibly mean

independent of choices once household shocks are controlled for. Both the theoretical struc-

ture of the model and empirical evidence from IFLS support the claim that individuals do

not switch sectors in response to transitory shocks, ensuring that equation (34) delivers valid

identification.

19



Figure 2

Because θi is unobserved, recovering it requires exploiting individuals’ sectoral choice

histories. Following the projection approach of Chamberlain (1982) and Suri (2011), I use

observed choices over time to infer comparative advantage without imposing functional forms

on unobserved heterogeneity. The central idea is that choices reveal which sector yields higher

returns for each individual, thereby uncovering the latent abilities θi that govern sectoral al-

location. In practice, substituting the choice trajectory into the model yields reduced-form

regressions whose coefficients can be written as functions of the underlying structural parame-

ters. Appendix E illustrates this mapping in a simple two-period case, showing explicitly how

reduced-form coefficients recover θi. By doing so, I estimate comparative advantage without

assuming any specific distribution for latent abilities—unlike Roy-type models, which hinge

on joint normality. This revealed comparative advantage interpretation is what connects

the structural framework to observable data. Appendix F further demonstrates how these

recovered θi values capture economically meaningful variation in individual sorting.

Together, this section shows that the selection effect β is identified under the plausibility

of the strict exogeneity assumption in 1990s Indonesia; moreover, θi is predicted from indi-
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vidual choice trajectories, which I refer to as revealed unobserved comparative advantages.

The empirical framework developed in Sections 3 and 4 combines several features: it

models comparative advantage explicitly, defines it as individual deviation from sector av-

erages while allowing it to drive sectoral choice, and recovers structural parameters without

imposing distributional assumptions on latent heterogeneity.

Relative to the existing literature, this framework contributes by (i) redefining absolute

advantage in line with the APG literature, (ii) linking the selection effect β to Borjas’s (1987)

Roy-model selection types, (iii) introducing the notion of revealed comparative advantage to

add economic interpretation to the projection method, and (iv) decomposing the APG into

observed, productivity, and sorting components.

The next section applies this empirical model to data from the first three waves of the

IFLS.

5 Estimate Selection on APG

In the previous section, I have described the empirical methodology based on Suri’s (2011)

approach, extending it to measure the impact of individual sorting on sectoral productivity

gaps. This section will implement this empirical model on the first three waves of the IFLS

survey data (1993-2000). To implement Suri’s method, I use the STATA package, randcoef,

developed by Cabanillas, Michler, Michuda and Tjernström (2018). To implement randcoef,

it is required to install the tuple package first. STATA provides download links to both

packages via Stata Community-Contributed programs.

In this section, I will first illustrate descriptive statistics for the first three waves of the

IFLS survey. Then, I will show the reduced-form estimation for each wave, using Seemingly

Unrelated Regression (SUR) for the first stage. Next, I will present the results at the

second stage, which involves recovering the structure parameters of interest, including the

selection effect β, and the distribution of comparative advantage θi. The first and second

stage estimations are both accomplished via randcoef in STATA. Finally, I will calculate

the impact of individual sorting on APG.
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5.1 Descriptive Statistics

The Indonesia Family Life Survey (IFLS) is a rich, longitudinal household survey that spans

five waves, conducted in 1993, 1997, 2000, 2007, and 2014, representing approximately 80%

of the Indonesian population. The survey covers 13 out of the then 27 provinces in Indonesia

in 1993, selected to reflect the country’s socioeconomic status (Strauss et al., 2016). During

this period, Indonesia experienced a significant economic transformation, transitioning from

a low-income to a lower-middle-income country. According to World Bank estimates (2025),

Indonesian real GDP per capita in constant 2015 U.S. dollars rose from $1,693 in 1993 to

$3,171 in 2014, going through the Asian financial crisis to a resilient post-crisis recovery

and then steady economic growth. The IFLS provides detailed, repeated observations on

individuals’ employment, sectoral choices, earnings, and household information, making it

particularly well-suited for investigating the impact of individual sorting on sectoral produc-

tivity gaps.

During the IFLS study period (1993-2014), Indonesia went through a significant political

and institutional transformation. Indonesia’s authoritarian New Order collapsed with the

ouster of President Suharto on 21 May 1998, initiating the Reformasi transition to demo-

cratic rule (Freedom House, 1998). In this transition, Parliament passed Laws 22/1999 and

25/1999, mandating a sudden, wide transfer of authority and revenues to the regional govern-

ments, effective 2001, which is known as “Big Bang” decentralization (Hofman and Kaiser,

2002). Given this sudden structural break in the institutions and its significant economic

implications, this research project naturally breaks the IFLS survey into two separate peri-

ods, 1993-2000 and 2000-2014, divided by the 2001 “Big Bang” decentralization. This paper

examines the first period, and a subsequent paper will further investigate the later waves of

the IFLS survey.

To study APG needs the data on earnings; moreover, unobserved comparative advan-

tage utilizes information from individuals’ sectoral choices. Therefore, when implementing

the empirical approach described in the previous section, I only include individuals with

information on both earnings and sector choice in each period. Hence, the panel used in

this analysis comprises 4,615 individuals across three waves, totalling 13,845 individual-wave
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observations.

Tables 3 and 4 report summary statistics at the individual level. On average, individuals

in the balanced panel were 40.4 years old in 1993, with mean age increasing steadily across

waves as expected. Roughly 44% of the people resided in urban areas, a proportion that re-

mained stable across survey rounds. This relatively stable rural-urban location likely reflects

the nature of this balanced sample, which comprises individuals with complete earnings and

sector information across all three waves. Those individuals with stable incomes are less

likely to migrate between urban and rural areas than the broader population. The sample

also exhibits a disproportionately male population, with 73% of individuals being male. This

gender imbalance does not accurately reflect the gender composition of the full IFLS sample,

but instead arises from sample restrictions: many women in the broader population work

without pay in family enterprises or are out of the labour force as homemakers, and thus are

excluded from the earnings-based analysis.

The share of individuals in non-agricultural work is relatively stable, declining slightly

from 65.5% in 1993 to 63.0% in 2000. Approximately 45% to 40% report waged employment

across waves, implying a gradual rise in informal or self-employment within this sample -

from about 54% in 1993 to 60% in 2000. The average monthly nominal income increased

substantially, from IDR 126,195 in 1993 to IDR 432,583 in 2000, reflecting both real income

growth and the effects of high inflation surrounding the Asian financial crisis during this

study period. This is corroborated by the rise in the Consumer Price Index (CPI), which

climbed from 145.2 to 209.4 over the same period. Meanwhile, the average number of hours

worked per month remained stable, hovering around 174 hours, with a slight decrease in

working hours over time.

Table 5 reports household-level characteristics for the same balanced sample. Average

household size increased modestly over time, from 4.78 members in 1993 to 5.80 in 2000.

Family business ownership rose sharply—from 68% in the first wave to 80% by the third

period. The share of households operating farm businesses remained relatively stable (rising

from about 43% to 48%), while the share engaged in non-farm businesses increased signif-

icantly, from 37% to 52% over the three periods. Nominal asset values in both categories

rose over time: farm business assets grew from IDR 7.1 million in 1993 to IDR 26.6 million
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in 2000, while non-farm business assets increased from IDR 6.4 million to IDR 9.5 million.

Notably, household assets not tied to any business, primarily in the form of real estate, were

substantially higher in value, rising from IDR 11.4 million to IDR 32.1 million over time.

This reference to the property values suggests that most family businesses are relatively

small in scale compared to households’ overall wealth holdings.

The IFLS also provides detailed information on economic shocks experienced by house-

holds in the five years preceding each survey. In 1993, 31.2% of households reported at least

one shock, with an average of 0.39 shocks per household. This economic shock rose to 40%

of households, with an average of 0.57 shocks reported in 1997, coinciding with the onset of

the Asian financial crisis. By 2000, both the incidence (35%) and intensity (0.44 shocks on

average) of reported shocks had declined.

The descriptive figures further illuminate sectoral choices and income dynamics in the

dataset. Figure 3 displays the distribution of sectoral transition patterns across the three

survey rounds. A majority of individuals exhibit persistent sectoral attachment: 55% remain

in the non-agriculture sector across all waves (Nonag–Nonag–Nonag), and 25% stay contin-

uously in agriculture. In contrast, sector switchers constitute a relatively small share of the

sample, with each specific transition path accounting for no greater than 5%. This high de-

gree of persistence suggests that individuals make their sectoral choices early on, likely based

on their comparative advantages, and tend to remain in those sectors over time. This pattern

lends empirical support to the assumption that unobserved sector-specific abilities—key to

sorting—are time-invariant over the study period. Moreover, it provides empirical evidence

that individuals are unlikely to switch sectors in response to transitory shocks. Combining

the information on the economic shocks collected from each wave, these sectoral transition

patterns provide additional support to the model identification illustrated in the previous

section.

Complementing the evidence on sectoral persistence, Figure 6 presents the share of indi-

viduals engaged in non-agricultural employment by urban and rural location. Participation

in non-agriculture consistently exceeds 85% in urban areas, compared to only 45–50% in

rural areas. These spatial differences are remarkably stable across survey rounds, indicating

a strong geographic pattern in sectoral employment. In addition, the high prevalence of non-
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Figure 3: Choice Trajectories over Three Waves

agricultural work, even in rural areas, suggests that individuals can switch sectors without

relocating. This sizable share of non-agriculture employment in rural areas challenges the

common strategy of using rural–urban migration as a proxy for sectoral transitions in the

Indonesian context.

Figure 7 displays the distribution of monthly income (in logarithmic terms) by wave

and sector. Across the three rounds, individuals in the non-agricultural sector consistently

earn more on average than those in the agricultural sector. In agriculture, outliers tend to

be on the lower side in every wave: many observations fall well below the lower whisker,

including a handful near zero, while high-side outliers are sparse. On the other hand, the

non-agricultural sector has relatively few low-side outliers, with a recurrent upper tail of high

earners protruding above the upper whisker in each wave. This figure also reflects substantial

within-sector earnings heterogeneity, which further corroborates the summary statistics in

Table 3, showing that the standard deviation of earnings exceeds the mean in each wave.

The distributions in Figure 7 confirm that the dispersions in the earnings are substantial

throughout the study period.
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Figures 7 and 8 illustrate the substantial and persistent earnings differences between the

agricultural and non-agricultural sectors over time. In Figure 7, the distributions of log

monthly earnings differ markedly by sector and remain consistently distinct across survey

waves. Figure 8 further shows that raw income ratios between non-agriculture and agricul-

ture, i.e., the observed APG, remain sizable but exhibit a declining trend over time.

In urban areas, the ratio of average earnings between the non-agricultural and agricultural

sectors was approximately 1.83 in 1993, peaked at 2.16 in 1997 during the Asian Financial

Crisis, and declined to 1.34 by 2000. In rural areas, the corresponding ratios were 1.95, 1.66,

and 1.70, respectively. Notably, the sectoral productivity gap is consistently larger in rural

than in urban areas before and after the crisis. However, this pattern temporarily reversed

in 1997, when the urban APG sharply exceeded that in the rural areas—likely reflecting

the differential impact of the crisis on agricultural versus non-agricultural earnings during

the Asian financial crisis. Overall, the sectoral productivity gap remains large throughout

the period but exhibits a clear downward trend, suggesting convergence in sectoral earnings

and raising important questions about the evolving role of sector-specific productivity and

selection.

Figure 9 presents the average log earnings across sectors between formal and informal

workers, where formal workers refer to waged workers in this context. In both sectors, formal

workers, on average, earn higher than informal ones, while non-agricultural workers enjoy

much higher earnings than those in agriculture.

Together, these descriptive statistics highlight five key empirical patterns in the balanced

panel from the first three IFLS waves: (1) roughly 80% of workers remain in their initial

sector, with 55% staying in non-agriculture and 25% in agriculture, while only 20% switch

sectors; (2) income gaps between sectors are large but decline over time, with distinct het-

erogeneous patterns in urban and rural areas; (3) earnings dispersion is substantial in both

sectors, skewed toward low outliers in agriculture and high earners in non-agriculture; (4)

sectoral composition differs sharply between urban and rural areas, with little change across

waves; and (5) informal workers earn markedly less than formal workers, a pattern that

persists both within and across sectors.

These regularities underscore the empirical motivation for modelling sectoral sorting
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through time-invariant unobserved comparative advantages, while also highlighting the need

to account for geographic location and macroeconomic conditions in explaining earnings

gaps. In sum, the descriptive evidence is consistent with the core assumptions of the iden-

tification strategy. The following subsection turns to preliminary estimation results and the

recovery of the structural parameters of interest.

5.2 Estimates Reduced-Form Coefficients

The reduced-form specification corresponds to equations (60) and (61) in Section 4.2, which

illustrate the estimation procedure using a simplified two-period model without covariates.

In the actual implementation presented here, the first-stage regression extends this procedure

to a three-period panel and controls for a suite of observed characteristics. The dependent

variable is log earnings from the individual’s primary job at each wave.

Tables 6, 7, and 8 report the estimation results from the first stage, corresponding to the

1993, 1997, and 2000 survey rounds, respectively. Each table presents four model specifica-

tions: Column (1) includes sectoral choices and their interactions across waves, without any

covariates. Column (2) adds the controls for locations: urban/rural residence and province.

Column (3) further controls for hours worked, waged work, age, gender, marital status, reli-

gion, and education in addition to the model in the preceding specification. Column (4) adds

two more variables: the log of province-level CPI (collected from the Indonesian Statistical

Bureau (Indonesa, 2019)) and a binary indicator for whether the household experienced any

economic shock in the past five years. As the CPI is at the provincial level, the categorical

variable, province, is dropped in the complete specification.

Coefficients are in the first row for each regressor, and the corresponding standard errors

are beneath them. A double-asterisk, **, denotes statistical significance at the 5% level, and

a single-asterisk, *, indicates the 10% level. The end of each column reports the number

of observations (N) and the R-squared value (R2) for each regression. Five key patterns

emerge from the reduced-form regressions:

1. Initial sectoral choice as a persistent predictor: The sector of employment in the first

wave significantly influences earnings across all periods. In contrast, sectoral choices
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in later waves exhibit little effect. This persistence supports the assumption of time-

invariant unobserved comparative advantage, consistent with the observed pattern of

a relatively high tendency to stay in the initially chosen sector. Additionally, the

contemporaneous sector choice indicator also exhibits significant explanatory power

for earnings in the respective period.

2. The impact of urban-rural residence is more important than provincial locations in

terms of explaining earnings. Column (2) adds two spatial controls: urban and

province. Urban is a dummy variable with a value of 1 if an individual resides in

an urban area. The province is a categorical variable, with 16 provinces: 13 initial

ones from the survey and three additional provinces due to households’ relocation.

The share of families that have moved across provinces is less than 0.1% in the balance

sample. Once control for urban-rural locations, the provinces do not have significant

explanatory power for earnings.

3. Urban-rural location in the initial period has significant explanatory power for earnings,

but this explanatory power diminishes in the third period. This substantial impact of

initial location is consistent with the low observed urban-rural mobility in the balanced

sample, where the proportions are as follows: 1,877 always-urban, 2,453 always-rural,

and 285 switchers.

4. Hours worked exhibit a strong positive correlation with the earnings in the same pe-

riod. Moreover, the dummy variable “wagedwork” captures the types of work for each

individual, with value 1 for wage-paid jobs and 0 for self-employment. The types of

employment have a significant impact on the earnings, and the formal employment

pays higher, which aligns with the descriptive graph shown in the previous section.

5. CPI fluctuations align with economic shocks: The inclusion of log province-level CPI

captures geographic price variation and some time-varying transitory shocks. After

controlling for CPI, the economic shocks are not significant in the first period; however,

they exhibit more explanatory power for earnings in the subsequent waves, suggesting

that CPI may also absorb some of the economic shocks.
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Finally, the covariates that commonly explain earnings behave as expected: age and

education are consistently strong predictors of earnings. These results establish a credible

reduced-form foundation for identifying structural parameters in the second-stage estimation.

In addition, the point estimates are stable across the four specifications as the controls

gradually increase. Next, I will show the results of recovered structural parameters.

5.3 Recovering Structural Parameters

The second-stage estimation recovers structural parameters by solving a system of linear

equations corresponding to the estimated reduced-form coefficients. Specifically, after con-

trolling for the observables, the coefficients of sector choices and their interactions contain

information about the underlying structural parameters. This section retrieves two key pa-

rameters of interest: the selection effect (β) and the distribution of comparative advantage

(θi), utilizing the randcoef package in STATA. The complete mathematical formulation

of the second-stage estimation refers to the paper by Cabanillas, Michler, Michuda, and

Tjernström (2018), who developed this STATA package.

Table 1 presents structural parameters λ1–λ7, α for sector-wide productivity gap, and

β, selection effect. Each column in Table 1 corresponds to the four specifications in the

first-stage estimation, presented in Tables 6, 7, and 8: Column (1) excludes all covariates;

Column (2) adds urban-rural residence and province; Column (3) further includes log hours

worked, waged work, age, gender, education, religion and marital status; and Column (4)

adds province-level log CPI and household-level economic shocks. The structural parameter

estimates exhibit three key insights:

1. The selection effect (β) is positive but not statistically significant. The point estimate

of β captures the extent to which sectoral income differentials stem from the individual

sorting based on unobserved comparative advantages. Its values increase from 0.154

log points in the baseline specification to 0.39 under the full controls. In all the cases,

β > 0 suggests positive selection: individuals with a stronger comparative advantage in

non-agriculture are more likely to enter that sector. Moreover, the people who choose

the non-agricultural jobs are those who are better farmers, i.e. earning higher than the
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average farmers. However, the standard errors are substantially large, ranging from

0.368 to 0.613, thereby rendering the estimates statistically insignificant.

This insignificant result aligns with the substantial variation in income observed in the

data. As shown in Table 3, the pooled average monthly income from the primary job is

IDR 268,329, while the standard deviation is IDR 1,711,989, more than six times larger

than the mean. Moreover, this pattern of widespread monthly earnings is persistent

in each wave. This high dispersion in earnings likely implies high dispersion in latent

abilities. Such dispersion means that even if selection is strong at the individual level

for some, it may not translate into a substantial sectoral wage gap after considering

the distribution of comparative advantages. Here is where the distribution assumption

matters to the estimation results.

This finding highlights the critical role of the underlying distribution of comparative

advantages. A more concentrated distribution could yield a more significant aggregate

selection effect, whereas a widely dispersed distribution, as observed here, dilutes its

statistical significance. Hence, distributional assumptions on unobserved comparative

advantages raise concerns for the empirical estimation of the selection effect, even

though it can offer profound theoretical insights.

2. The estimated distribution of comparative advantages (θi) deviates substantially from

normality. As specified in this model, Equation (35) expresses the unobserved com-

parative advantages θi in a three-period model. After obtaining estimates of λ1–λ7,

normalize θi such that
∑

θi = 0. Then, I can obtain λ0 by calculating the intercept

using Equation (36).

θi = λ0 + λ1Di1 + λ2Di2 + λ3Di3 + λ4Di1Di2

+ λ5Di1Di3 + λ6Di2Di3 + λ7Di1Di2Di3 + νi (35)

λ0 = −λ1Di1 − λ2Di2 − λ3Di3

− λ4Di1Di2 − λ5Di1Di3 − λ6Di2Di3 − λ7Di1Di2Di3 (36)

Once all the λ’s are available, using linear prediction recovers the empirical distribution

of revealed comparative advantages θ̂i. Figure 4 displays the estimated distribution for
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specification (4) in Table 1, where the red line is the empirical distribution using the

default Epanechnikov kernel bandwidth in STATA, determined by the sample standard

deviation, inter-quartile range, and sample size (StataCorp, 2025). The STATA default

bandwidth for θ̂i ≈ 0.0199, represented by the red line. The various kernel bandwidths

provide references about how the distribution shape changes with the bandwidths. The

key takeaway of Figure 4 is that the empirical distribution of revealed comparative

advantages θ̂i is not close to normality.

Figure 4: Recovered Distribution of Comparative Advantage for Specification (4)

This finding on the empirical distribution of comparative advantages aligns with exten-

sive studies in the labour economics literature that question the conventional assump-

tion of log-normality in the Roy model selection framework (Heckman and Honore,

1990). The two peaks located on both tails and the broad dispersion of θi call into

question the empirical estimation approach that relies on strong parametric assump-

tions about unobserved heterogeneity in the Indonesian context in this study period.

Importantly, for individual selection to meaningfully influence sectoral productivity
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gaps, a sufficiently large share of the population must sort into sectors based on com-

parative advantages in the same direction, i.e the same sign in β. Without such align-

ment, even substantial individual-level sorting may fail to generate aggregate effects

large enough to shift the observed APG.

3. Sectoral productivity differences (α) explain a substantial and statistically significant

share of the observed earnings gap. The estimated sectoral premium in the baseline

specification without controls is 0.509 log points, which declines slightly to 0.42 in

the complete specification with all the controls. Importantly, as the average values

of α decrease, their associated standard errors also contract, enhancing the precision

and statistical significance of the estimates. As shown in Table 1, the estimated α

values across columns (1) to (4) are 0.509, 0.491, 0.413, and 0.420, with corresponding

standard errors of 0.090, 0.082, 0.066, and 0.061. This consistent precision suggests

that sector-wide productivity differences remain a robust and one of the primary factors

in explaining the APG, even after controlling for a rich set of covariates.

Table 1: Structural Parameters

Structural Parameters (1) (2) (3) (4)

λ1 0.222
(0.063)

** 0.135
(0.063)

** 0.127
(0.058)

** 0.134
(0.056)

**

λ2 -0.037
(0.072)

-0.063
(0.071)

-0.097
(0.067)

-0.066
(0.064)

λ3 -0.055
(0.063)

-0.073
(0.062)

-0.054
(0.054)

-0.042
(0.053)

λ4 -0.031
(0.093)

-0.009
(0.091)

0.028
(0.081)

0.029
(0.077)

λ5 0.308
(0.124)

** 0.295
(0.124)

** 0.155
(0.099)

0.125
(0.093)

λ6 0.193
(0.106)

* 0.185
(0.106)

* 0.118
(0.091)

0.092
(0.085)

λ7 0.015
(0.153)

-0.063
(0.148)

-0.024
(0.127)

-0.026
(0.112)

α 0.509
(0.090)

** 0.491
(0.082)

** 0.413
(0.066)

** 0.420
(0.061)

**

β 0.154
(0.368)

0.119
(0.444)

0.180
(0.508)

0.390
(0.613)

Notes: Numbers in parentheses are standard errors. Asterisks indicate significance: * p < 0.10, ** p < 0.05.

In contrast, the selection effect (β) increases in magnitude across specifications but

remains statistically insignificant throughout. The estimated values of β rise from 0.154

32



in column (1) to 0.39 in column (4), yet the standard errors increase even more sharply,

from 0.368 to 0.613, resulting in wide confidence intervals and imprecise inference. This

pattern suggests that while selection may play a role in shaping the sectoral choices

at the individual level, its aggregate contribution to explaining the APG is weak and

highly uncertain in this specific context.

Hence, the recovered structural parameters suggest that sector-wide productivity differ-

ences are the primary driver of the observed APG in this setting. As more covariates increase,

the explanatory power of α becomes more precise and consistent, while the contribution of β

becomes increasingly diffuse and empirically fragile. This fragility of individual sorting at the

sector level originates from the empirical distribution of unobserved comparative advantages

θi.

5.4 Individual Selection on APG

As discussed in the previous subsection, the selection effect β is not statistically significant

in shifting the observed earnings at the sector level. However, this extra reward from the

individuals who work in the non-agricultural sector only captures the partial selection effect

from unobserved comparative advantages at the aggregate level. As described by the Equa-

tion 32 in Section 3.5, the impact of individual sorting based on latent abilities at the sector

level comprises two components: one is the additional returns from the average workers by

choosing the non-agricultural vs. agricultural sector, and the other is the average differ-

ences of the unobserved comparative advantages between the two sectors. β only reflects the

selection effect from the former.

To infer the second component of the sorting at the sector level, I need to compute further

the difference of the conditional means of θi for the workers between the non-agricultural and

agricultural sectors. Since the estimated λ̂0 is not at level, I cannot calculate E[θi|D = 1]

and E[θi|D = 0] separately. However, the difference in these two conditional means cancels

the intercept λ0 shown in the Equation 35. Therefore, I can sum the estimated θ̂i values in

each sector at each wave, and then take the mean difference of these two estimated θ̂i’s in the

respective sectors. At each period, the mean difference between the estimated θ̂i’s between
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the two sectors yields the conditional mean difference from the unobserved comparative

advantage, which is the second component in the Equation 32 and refers to how different

the latent abilities are between the farmers and non-farmers on average at a given wave.

Table 2 shows the share of this conditional mean difference in APG at each period and

the average over the waves. The observed log earnings differences at the sector level, which

is APG, are in the second column, right next to the column for recording the waves. The

difference in the means of latent abilities between farmers and non-farmers is in the third

column, and the share of this conditional mean difference in the APG is in the far right

column. The APG from the data are 1.0655, 1.0208, and 1.1224 log points in waves one

to three, respectively, and 1.0696 log points on average. The latent skills between non-

farmers and farmers are slightly negative, -0.0063, -0.0361, and -0.0285 log points in the

sequential waves, and -0.0236 log points on average. Overall, the impact of this latent ability’s

conditional mean difference between non-agricultural and agricultural workers accounts for

only 2.22% of the APG, with a direction opposite to that of the observed earnings gap.

Table 2: Conditional Mean Difference in APG

Wave APG E[θi|D = 1]− E[θi|D = 0] ∆E[θi]
APG

1 1.0655 -0.0063 -0.0059

2 1.0208 -0.0361 -0.0354

3 1.1224 -0.0285 -0.0254

Average 1.0696 -0.0236 -0.0222

Notes: This table reports the estimated conditional mean

difference in unobserved comparative advantage between

non-agriculture (D = 1) and agriculture (D = 0) groups,

corresponding to the second component in equation 32.

This finding suggests that the latent abilities are not substantially different between non-

agricultural and agricultural workers at each period after averaging over the samples. This

result does not indicate that farmers and non-farmers are alike in terms of their unobserved

comparative advantages at the individual level; instead, the heterogeneity of the latent abili-

ties is not distinct after averaging over the workers in respective sectors. This weak difference
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of latent abilities between nonagricultural and agricultural workers at the sector level rec-

onciles with the estimation on the structural parameter selection effect β with a large point

estimate but highly dispersed.

Figure 5 plots the values of the estimated revealed comparative advantages θ̂i after cen-

tring the
∑

θ̂i = 0, with the normalized value of θ̂i labelled on the horizontal axis and

the group share in the sample on the vertical axis. Although the gap of earnings between

sectors is substantial (1.0696 log points on average), the average latent skills among groups

fall within the range of -0.2 to 0.1 log points. This moderate unobserved heterogeneity

among the different choice trajectory groups likely stems from their high dispersion within

the sector. Moreover, the groups closer to zero have more observations than those located

far away. Together, the average difference of unobserved heterogeneity between agricultural

and non-agricultural workers plays a little role in explaining observed APG.

Figure 5: Recovered Distribution of Comparative Advantage for Specification (4)

In sum, the selection from the unobserved comparative advantage does not have a sig-

nificant impact on the sectoral productivity gap in this setting. The selection at the sector

level comprises two components: the extra returns for the average non-agricultural workers,
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and the mean differences between non-agricultural and non-agriculture workers. The struc-

tural parameter, selection effect (β), suggests an insignificant impact of individual sorting

on the sectoral productivity gap. In addition, the mean difference between farmers and non-

farmers explains about 2.2% of the APG, which is insignificant compared to the sector-wide

productivity gap and selection on observed characteristics.

This paper analyzes the first three waves of the IFLS survey and finds three key points.

First, the sector-wide productivity gap drives the APG, suggesting that sectoral structure

and technology are vital in explaining the productivity disparities at the aggregate level.

This finding suggests a crucial role for sector-level allocation efficiency and technology im-

provement in reducing the APG. Second, the selection effect is positive in magnitude but

statistically insignificant due to high dispersion in latent abilities, suggesting widespread het-

erogeneity in individual comparative advantages. However, this heterogeneity in latent skills

at the individual level plays a relatively minor role in explaining the APG, after averaging

across sectors. More importantly, a high average selection effect at the personal level may not

significantly impact sectoral impact, as it also critically depends on the distribution of the

unobserved heterogeneity. Third, the estimated empirical comparative advantages features

two peaks and does not exhibit normality, indicating that imposing restrictive distributional

assumptions may misrepresent underlying heterogeneity and selection effects.

6 Discussion

Contrary to the prevailing consensus in the APG literature, which attributes a substantial

share of sectoral productivity gaps to self-selection, this paper finds that individual sorting

contributes minimally to the average earnings disparities between the agricultural and non-

agricultural sectors. Moreover, this study identifies a persistent and substantial sector-wide

productivity gap as a crucial driver of the APG. Hence, the combination of the sector-wide

technology difference and individual observed heterogeneity explains the majority of the

sectoral productivity gaps when using a balanced panel in the first three waves of the IFLS

data.

To reconcile my findings with the consensus in the current literature, I conduct a series
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of comparison exercises using the same balanced panel data in this study. First, I estimate

the selection effect using a two-way fixed effects (TWFE) model and calculate the difference

between the sectoral productivity gaps with and without controlling for individual fixed

effects to infer the selection effect. This method yields a significant selection effect on APG.

Next, I apply the canonical Heckman two-step estimator, which assumes that the distribution

of the unobserved components is jointly normal. The results from both pooled and panel data

exhibit significant selection on the sectoral productivity gaps. Hence, both the TWFE and

distributional assumption methods produce estimates that align with the relevant findings

in the APG literature.

Finally, I implement the selection bias correction procedure for panel data developed by

Wooldridge (1995), which relaxes the joint normality assumption on individual latent abilities

and applies a control function to correct for selection bias in panel settings. On the same

dataset, once I relax the distributional assumptions on unobserved abilities, the estimated

selection effect becomes statistically insignificant, which reconciles with my findings. The key

takeaway from these comparison exercises shows that the estimation of the selection effect

depends critically on the choice of the method. Therefore, it is essential to recognize the

limitations of various approaches and choose the most suitable one to address the research

question at hand.

6.1 Estimating Selection Using a TWFE Approach

Several studies in the APG literature rely on TWFE models to estimate or infer the impact

of latent skills on the sectoral earnings gap, concluding that there is a large and significant

selection effect on APG. This subsection shows that using the TWFE on the first three-wave

IFLS dataset also yields a significant selection effect.

Table 9 reports pooled OLS for three IFLS waves with log primary-job earnings as the

outcome. Adding covariates and year fixed effects reduces the raw APG, with the fully

specified model yielding an observed gap of 0.651 log points. Table 10 estimates the same

specifications in panel form; even-numbered columns include individual and year fixed ef-

fects (TWFE), odd-numbered columns omit individual fixed effects. Standard errors are

clustered at the person level. Introducing individual fixed effects substantially lowers the
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agriculture–nonagriculture gap across specifications. Table 11 quantifies these reductions:

pooled OLS vs. TWFE differs by 0.556–0.213 log points (Panels b–d), and adding individ-

ual fixed effects within the panel reduces the gap by 0.451–0.191 log points (Panels c–d).

All differences are statistically significant at the 1% level,consistent with the claim in the

literature that selection effects are large.

While these reductions are statistically significant and align with previous works, TWFE’s

interpretation as “selection on comparative advantage” is problematic for two reasons. First,

identification is local to switchers. With roughly 20% switching sectors in these waves, the

fixed-effects estimates reflect within-person changes for a small, possibly non-representative

subset, rather than the population-level selection relevant for APG. Second, TWFE absorbs

all time-invariant heterogeneity. In the main model (eqs. (18)–(19)), permanent unobserved

ability decomposes into a sector-relevant component, θi (comparative advantage), and a

sector-irrelevant component, τi. The earnings equation (eq. (23)) shows that TWFE dif-

ferences out both θi and τi. Because TWFE cannot separate sector-specific ability from

common ability, it risks attributing earnings changes due to τi—e.g., general work ethic or

family networks that help in either sector—to sector choices. In short, TWFE could conflate

general individual heterogeneity unrelated to sectoral choice with the actual sorting based on

the latent skills, thereby overstating the contribution of the selection effect to the observed

APG.

Unlike the fixed-effect method, the CRC approach models sector-specific latent abili-

ties and exploits choice histories, isolating the comparative-advantage component θi rather

than incorporating all time-invariant traits into a single undifferentiated fixed effect for each

individual.

6.2 Empirical Consequences of Distributional Assumptions

After evaluating the limitations of the TWFE method in modelling selection based on latent

skills, I turn to a second dominant strategy in the APG literature: parametric selection

corrections rooted in Roy’s (1951) framework. This approach assumes individuals choose

sectors by comparing potential earnings, but only the chosen earnings are observed. While

this setup mirrors the structure developed in Section 3, the literature typically departs in one
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critical respect: it imposes strong distributional assumptions on unobserved heterogeneity,

most commonly joint normality of sector-specific abilities.

Why does this matter? Because the parametric assumption, rather than the data alone,

often drives the size and significance of the estimated selection effect. For example, sev-

eral studies—including Pulido and Świecki (2019)—extend the Roy model with selection

and mobility frictions and estimate their frameworks on the IFLS. Using indirect inference

(Gouriéroux et al., 1993), Pulido and Świecki match wage regressions and mobility patterns

under the joint normality of latent abilities and idiosyncratic shocks. Within this structure,

they find that selection accounts for 45–70% of the APG, depending on substitution elastic-

ities. These results illustrate how significant selection effects can emerge under parametric

assumptions, rather than directly from the data-generating process.

To assess how these assumptions shape empirical results in my context, I re-estimate

the selection effect using the first three waves of IFLS under three standard parametric

corrections: the canonical Heckman two-step (Heckman, 1979), the panel MLE estimator

xtheckman, and Wooldridge’s (1995) control function approach. For clarity, the full model

setup for each method, as well as the discussion of exclusion restrictions, are provided in

Appendix G; here I focus on comparative interpretation. These exercises demonstrate how

imposing or relaxing distributional assumptions on latent abilities changes the magnitude,

and even the sign, of the estimated selection effect.

Table 14 reports the Heckman two-step results for the pooled data. The IMR coef-

ficients are statistically significant in both sectors, implying systematic sectoral selection.

Specifically, the estimates indicate negative selection into non-agriculture (IMR coefficient

of around −0.14) and positive selection into agriculture (IMR coefficient ranging from 0.20

to 0.25). To bolster credibility, I impose exclusion restrictions: variables such as age and

non-farm business are used for non-agriculture, while rural-born, marital status, and farm

business are used for agriculture. As Tables 12–13 show, these instruments strongly predict

sector choice but are not significant determinants of sectoral wages, supporting their validity.

Table 15 summarizes the implied contribution of selection to the observed APG. De-

pending on specification, selection into non-agriculture explains 21–22% of the earnings gap,

while selection into agriculture accounts for 31–38%. These magnitudes align with the find-
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ings of Pulido and Świecki (2019), underscoring the strong influence of the joint normality

assumption on estimates of selection.

To account for the panel nature of the data, I next apply xtheckman, a maximum likeli-

hood estimator that extends Heckman’s framework to panel settings. Rather than computing

an IMR for each observation, this method directly estimates the correlation between unob-

served sectoral fixed effects and time-varying error terms. Convergence proved challeng-

ing, with none of the specifications reaching full convergence despite extensive iterations.

Nonetheless, where results are available (Table 16), the correlations between unobservables

across sectors are large and statistically significant. This suggests that, under the joint nor-

mality assumption, selection bias remains substantial even in the panel framework. These

results broadly align with Pulido and Świecki’s (2019) indirect inference estimates, high-

lighting that, regardless of estimation technique, assuming bivariate normality produces

significant selection effects. Appendix G.2 provides further details.

Finally, I turn to Wooldridge’s (1995) control function approach, which relaxes the joint

normality assumption. Unlike Heckman or xtheckman, it does not hinge on any paramet-

ric assumption about the joint distribution of unobserved sectoral abilities. This method

employs panel differencing to eliminate time-invariant heterogeneity and incorporates gener-

alized residuals from a first-stage probit regression as control functions in the wage equation.

Applied to the same dataset, the estimated coefficients on the control functions are statisti-

cally insignificant across specifications and both sectors (Table 19). Appendix G.3 provides

the full model exposition and implementation details.

Taken together, these results demonstrate that distributional assumptions, rather than

the data alone, drive the size and even the sign of the estimated selection effect. Under joint

normality (as in Heckman or xtheckman), selection appears large and significant, explaining

a non-trivial share of the APG. Under weaker assumptions (as in Wooldridge), the selection

effect disappears. This sensitivity highlights the methodological risk of interpreting para-

metric Roy-model estimates as structural facts about the labour market: what appears to

be strong evidence of self-selection may instead be an artifact of functional form assump-

tions imposed on unobserved heterogeneity. This contrast reinforces the value of my CRC

framework, which avoids imposing such assumptions while directly modelling sector-specific
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comparative advantage.

In sum, the fixed-effect approach is not well-suited for studying self-selection based on

latent skills because unobserved comparative advantages necessitate distinguishing individ-

ual fixed effects at the sector level, which the fixed-effect method cannot achieve. On the

other hand, imposing distributional assumptions on latent skills across sectors often has

a consequential impact on the estimation results of the selection effect. In this section, I

demonstrate that the selection on APG would be significant if I were to implement either

a fixed-effects or distributional assumption. This illustration reconciles the findings in my

paper with the relevant studies in the APG literature. However, using the different empiri-

cal method by Suri (2011), I find that individual sorting is insignificant in terms of sectoral

productivity gaps in Indonesia.

This paper estimates sector-specific comparative advantage without imposing any distri-

butional assumptions. This method treats sectoral choices over time as informative signals of

latent comparative advantage. It exploits the panel structure of the data to recover structural

parameters non-parametrically. However, this method also faces limitations. As Tjernström

et al. (2023) emphasize, identification requires variation in choice trajectories and earnings

over time. When incomes are very similar across different choice groups or choice transitions

are incomplete, the system of equations may become weakly identified or even break down.

Moreover, the method requires a balanced panel and assumes that unobserved comparative

advantages are time-invariant.

Despite these caveats, the Suri-inspired approach offers a valuable alternative to exist-

ing methods by avoiding functional form assumptions and directly modelling unobserved

comparative advantages. Given the stark contrast in results across the three parametric

approaches examined in this section, and the fragility of distributional assumptions in this

context, the Suri-based estimator provides a theoretically and empirically grounded alter-

native to revisit long-standing claims about the role of selection in explaining agricultural

productivity gaps.
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7 Conclusion

This paper revisits a critical question: how much of the agricultural productivity gap (APG)

can be explained by individual sorting on unobserved comparative advantage? Using the

Indonesia Family Life Survey (IFLS), I focus on the pre-decentralization period of the 1990s,

a decade of stability before the structural break of the 2000 “Big Bang” reforms. Unlike

much of the APG literature, which pools all five IFLS waves and concludes that selection

plays a large role, I show that sorting contributed little to the productivity gap during this

earlier period. Instead, sector-wide productivity differences and observable heterogeneity

explain most of the earnings disparity between agriculture and non-agriculture.

This study contributes on three fronts. First, it demonstrates that the impact of individ-

ual sorting on APG has two distinct components: (i) the selection effect, β, which measures

the average extra returns to unobserved comparative advantage; and (ii) the mean differences

in latent abilities across sectors. Previous work typically emphasized only β, overlooking the

role of the second term. Unless agricultural and non-agricultural workers are similar on

average in their latent abilities, β represents only part of the sorting impact at the sectoral

level. This paper addresses this blind spot in the literature.

Second, the paper adapts and applies the CRC framework to evaluate selection on APG,

drawing on Suri (2011), Lemieux (1998), and Chamberlain (1982). The framework (i) rede-

fines absolute advantage consistently with APG measurement; (ii) models comparative ad-

vantage as individual deviations from sector means; and (iii) recovers β and the distribution

of θi without parametric assumptions (e.g., joint normality). In doing so, it contrasts directly

with prevailing approaches: two-way fixed effects, which absorb all time-invariant hetero-

geneity (including sector-irrelevant ability), and parametric selection corrections, which hinge

on functional form assumptions. Echoing the concerns of Heckman and Honore (1990), the

analysis shows that distributional assumptions have major consequences when empirically

measuring the selection effect due to unobservable abilities.

Third, the paper formally maps the selection effect β to the classic Roy model framework.

This mapping anchors Suri’s CRC framework in the established labour literature while high-

lighting its key distinction: unlike the coefficient on an inverse Mills ratio, β is recovered
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without distributional assumptions. This connection situates the paper’s contribution within

a broader intellectual lineage and clarifies how the CRC approach relates to the classic Roy

framework.

The policy relevance of this study lies in showing that sorting affects APG through two

channels, not one. Moreover, the empirical distribution of latent abilities in IFLS is far

from normal and shows mass in both tails, which means the two terms can even move in

opposite directions. Under joint normality, the selection effect β and the mean difference

in latent abilities always move in the same direction, differing only in magnitude. In that

world, policies based on β alone would miss the target but not misfire. In reality, when

the distribution is skewed or fat-tailed, as the IFLS evidence suggests, the two terms may

diverge, and policies that target only one risk failure or unintended consequences.

Two cases illustrate the stakes. In Sub-Saharan Africa (2000s–2010s), large-scale skills

and entrepreneurship programs underperformed because they assumed that general training

would yield higher non-farm earnings. In settings where β was weakly negative but mean

ability differences across sectors were large, reallocating workers with poor sectoral fit pro-

duced disappointing outcomes. By contrast, Indonesia’s rice-intensification programs in the

1970s–1990s succeeded by raising agricultural productivity itself, benefiting workers regard-

less of comparative advantage and narrowing earnings gaps without requiring reallocation.

Together, these examples underscore that policies should not assume alignment between sort-

ing components; instead, they should account for both the returns to comparative advantage

and the average ability gap across sectors.

In summary, this paper offers both a conceptual correction and an empirical reevalua-

tion of selection in APG analysis. By incorporating the missing component of latent mean

differences, adopting a distribution-free CRC framework, and situating the analysis within

Indonesia’s pre-decentralization context, the study demonstrates that individual sorting ex-

plained a small portion of the country’s APG in 1990s Indonesia. The gap was driven largely

by sector-wide technology differences and observable heterogeneity.

More importantly, this paper demonstrates that revealed comparative advantages can

help policymakers gather valuable information and design effective policies that align with

their intended objectives. In doing so, it provides a roadmap for future research and policy
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design that treats self-selection not as a foregone conclusion but as an empirical question,

with potentially very different answers across time, space, and institutional context.
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Table 3: Descriptive Statistics for Individuals – Part A

Number of Survey Round

Variable 1 2 3 Total

N
4,615

(33.3%)

4,615

(33.3%)

4,615

(33.3%)

13,845

(100.0%)

hh count
3,963.000

(98.8%)

3,991.000

(99.5%)

4,012.000

(100.0%)

4,012.667

(100.0%)

gender
0.727

(0.446)

0.727

(0.446)

0.727

(0.446)

0.727

(0.446)

age
40.407

(11.250)

44.335

(11.173)

47.308

(11.277)

44.016

(11.504)

non-agriculture (primary job)
0.655

(0.475)

0.657

(0.475)

0.630

(0.483)

0.647

(0.478)

wagedwork (primary job)
0.454

(0.498)

0.446

(0.497)

0.408

(0.491)

0.436

(0.496)

income
126,194.800

(167,450.486)

246,299.956

(2,692,023.335)

432,582.566

(1,212,964.123)

268,359.107

(1,711,988.882)

ln income
11.127

(1.209)

11.629

(1.213)

12.096

(2.026)

11.617

(1.582)

hours worked
177.964

(74.269)

171.676

(74.998)

172.585

(81.850)

174.088

(77.168)

ln hours worked
5.076

(0.505)

5.027

(0.546)

5.014

(0.596)

5.039

(0.551)

cpi
145.195

(4.604)

194.337

(7.064)

209.439

(9.432)

182.990

(28.083)

ln cpi
4.978

(0.031)

5.269

(0.036)

5.343

(0.045)

5.197

(0.168)

ruralborn
0.746

(0.435)

0.749

(0.434)

0.792

(0.406)

0.763

(0.425)

moved
0.533

(0.499)

0.465

(0.499)

0.462

(0.499)

0.487

(0.500)

urban
0.442

(0.497)

0.439

(0.496)

0.436

(0.496)

0.439

(0.496)

Notes: Top line reports means (or counts for N, hh count); second line reports standard deviations for

continuous/binary variables and percentages for N and hh count. Monetary values in Indonesian Rupiah.

Statistics use the balanced panel (waves 1–3).
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Table 4: Descriptive Statistics for Individuals – Part B (Categorical Variables)

Number of Survey Round

Category 1 2 3 Total

N 4,615 (33.3%) 4,615 (33.3%) 4,615 (33.3%) 13,845 (100.0%)

MARITAL STATUS

Not yet married 99 (2.1%) 54 (1.2%) 38 (0.8%) 191 (1.4%)

Married 4,231 (91.7%) 4,194 (90.9%) 4,146 (89.8%) 12,571 (90.8%)

Separated 19 (0.4%) 22 (0.5%) 24 (0.5%) 61 (0.4%)

Divorced 56 (1.2%) 56 (1.2%) 59 (1.5%) 181 (1.3%)

Widowed 210 (4.6%) 289 (6.3%) 342 (7.4%) 841 (6.1%)

EDUCATION

Unschooled 698 (15.1%) 651 (14.1%) 619 (13.4%) 1,968 (14.2%)

Primary 2,372 (51.4%) 2,434 (52.8%) 2,362 (51.2%) 7,168 (51.8%)

Junior high 548 (11.9%) 509 (11.0%) 485 (10.5%) 1,542 (11.1%)

Senior high 760 (16.5%) 745 (16.1%) 667 (14.5%) 2,172 (15.7%)

College/University 233 (5.1%) 273 (5.9%) 341 (7.4%) 847 (6.1%)

Others 0 (0.0%) 2 (0.0%) 136 (3.0%) 138 (1.0%)

RELIGION

Islam 4,007 (86.8%) 4,030 (87.3%) 4,020 (87.1%) 12,057 (87.1%)

Protestant 187 (4.1%) 185 (4.0%) 192 (4.2%) 564 (4.1%)

Catholic 90 (2.0%) 92 (2.0%) 94 (2.0%) 276 (2.0%)

Hindu 286 (6.2%) 281 (6.1%) 284 (6.2%) 851 (6.1%)

Buddhist 23 (0.5%) 22 (0.5%) 19 (0.4%) 64 (0.5%)

Others 22 (0.5%) 7 (0.2%) 4 (0.1%) 33 (0.2%)

Notes: Each cell shows count with share in parentheses. Shares sum to 100% within each block.
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Table 5: Descriptive Statistics for Households

Number of Survey Round

Variable 1 2 3 Total

N
3,963

(33.1%)

3,991

(33.4%)

4,012

(33.5%)

11,966

(100.0%)

panel
.

(.)

0.980

(0.141)

0.978

(0.146)

0.979

(0.144)

household size
4.777

(1.981)

5.361

(2.180)

5.801

(2.408)

5.315

(2.237)

urban
0.430

(0.495)

0.426

(0.495)

0.427

(0.495)

0.428

(0.495)

own farm business
0.434

(0.496)

0.397

(0.489)

0.476

(0.500)

0.436

(0.496)

farm business assets
7,144,077.782

(33,921,100.065)

10,330,989.860

(21,343,301.269)

26,572,186.430

(83,485,328.313)

15,729,198.326

(57,595,891.874)

ln farm business assets
14.064

(2.216)

14.798

(1.998)

15.550

(2.127)

14.864

(2.208)

owns non-farm business
0.374

(0.484)

0.398

(0.490)

0.523

(0.500)

0.432

(0.495)

non-farm business assets
6,374,035.384

(59,736,751.708)

5,439,189.255

(24,837,647.647)

9,510,752.091

(46,064,887.772)

7,351,954.719

(45,183,582.166)

ln non-farm business assets
12.257

(2.356)

12.976

(2.339)

13.350

(2.434)

12.931

(2.423)

own family business
0.675

(0.469)

0.672

(0.469)

0.803

(0.398)

0.717

(0.451)

own assets
0.976

(0.153)

0.999

(0.035)

0.999

(0.035)

0.991

(0.093)

total assets not for business
14,005,326.895

(78,347,639.350)

20,270,537.043

(52,369,917.086)

37,537,032.473

(85,931,361.293)

24,060,081.890

(74,282,490.131)

ln total assets not for business
14.709

(1.785)

15.654

(1.621)

16.392

(1.586)

15.595

(1.801)

real estate not for business
11,356,720.903

(56,657,512.411)

18,508,233.980

(49,100,027.450)

32,133,196.522

(67,800,563.543)

20,998,405.810

(59,108,696.917)

ln real estate not for business
14.826

(1.573)

15.623

(1.519)

16.309

(1.522)

15.611

(1.651)

shock
0.312

(0.463)

0.402

(0.490)

0.345

(0.475)

0.353

(0.478)

numbers of shock
0.392

(0.653)

0.567

(0.821)

0.443

(0.700)

0.467

(0.732)

Notes: Top line reports means (or counts for N ); second line reports standard deviations (or column

shares for N ). Monetary values are in Indonesian Rupiah.
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Figure 6: Non-agriculture Share Urban vs. Rural over Three Waves
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Figure 7: Log Income Non-agriculture vs. Agriculture over Three Waves

Figure 8: Sectoral Earnings Gaps Urban vs. Rural over Three Waves
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Figure 9: Sectoral Log Earning Difference Formal vs. Informal Workers
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Table 6: SUR: Outcome Variable, log Earnings in 1993

ln earnings 1 (1) (2) (3) (4)

nonag 1 0.693
(0.09)

** 0.592
(0.089)

** 0.53
(0.08)

** 0.539
(0.079)

**

nonag 2 -0.036
(0.099)

-0.057
(0.097)

-0.097
(0.088)

-0.092
(0.087)

nonag 3 0.012
(0.094)

-0.009
(0.093)

0.037
(0.082)

0.059
(0.082)

nonag 1 * nonag 2 0.028
(0.148)

0.043
(0.145)

0.075
(0.13)

0.100
(0.129)

nonag 1 * nonag 3 0.246
(0.169)

0.220
(0.166)

0.076
(0.148)

0.052
(0.147)

nonag 2 * nonag 3 0.207
(0.163)

0.188
(0.160)

0.129
(0.144)

0.114
(0.143)

nonag 1 * nonag 2 * nonag 3 0.002
(0.228)

-0.097
(0.224)

-0.056
(0.201)

-0.058
(0.199)

urban 1 0.452
(0.097)

** 0.185
(0.087)

** 0.185
(0.086)

**

urban 2 -0.192
(0.114)

0.151
(0.103)

0.109
(0.101)

urban 3 0.067
(0.084)

-0.067
(0.075)

-0.047
(0.074)

ln hrsworked 1 0.362
(0.031)

** 0.354
(0.030)

**

ln hrsworked 2 0.053
(0.028)

* 0.051
(0.028)

**

ln hrsworked 3 0.026
(0.026)

0.026
(0.025)

wagedwork 1 0.106
(0.042)

** 0.105
(0.042)

**

wagedwork 2 0.086
(0.045)

** 0.088
(0.044)

**

wagedwork 3 -0.065
(0.042)

-0.057
(0.042)

ln cpi 1 -3.051
(0.941)

**

ln cpi 2 3.609
(0.726)

**

ln cpi 3 1.082
(0.408)

**

shock 1 -0.021
(0.031)

shock 2 -0.008
(0.030)

shock 3 0.038
(0.030)

province N Y Y N

age N N Y ** Y **

gender N N Y Y

marital status N N Y Y

religion N N Y Y

education N N Y ** Y **

constant 10.412
(0.032)

** 10.391
(0.050)

** 6.919
(0.225)

** -2.680
(3.741)

N 4,615 4,614 4,513 4,510

R2 0.189 0.221 0.392 0.402

Notes: Numbers in parentheses are standard errors. Asterisks indicate significance: * p < 0.10, ** p < 0.05.
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Table 7: SUR: Outcome Variable, log Earnings in 1997

ln earnings 2 (1) (2) (3) (4)

nonag 1 0.277
(0.091)

** 0.186
(0.090)

* 0.165
(0.079)

** 0.177
(0.078)

**

nonag 2 0.462
(0.099)

** 0.437
(0.098)

** 0.340
(0.087)

** 0.352
(0.087)

**

nonag 3 -0.045
(0.095)

-0.064
(0.093)

-0.070
(0.082)

-0.055
(0.081)

nonag 1 * nonag 2 -0.071
(0.149)

-0.054
(0.147)

-0.036
(0.130)

-0.021
(0.128)

nonag 1 * nonag 3 0.295
(0.170)

0.276
(0.168)

* 0.141
(0.147)

0.114
(0.146)

nonag 2 * nonag 3 0.114
(0.164)

0.105
(0.162)

0.049
(0.143)

0.030
(0.142)

nonag 1 * nonag 2 * nonag 3 0.137
(0.230)

0.358
(0.226)

0.087
(0.199)

0.101
(0.198)

urban 1 0.438
(0.097)

** 0.180
(0.087)

** 0.199
(0.086)

**

urban 2 -0.127
(0.115)

0.051
(0.102)

0.041
(0.101)

urban 3 0.131
(0.084)

0.0003
(0.075)

-0.041
(0.074)

ln hrsworked 1 0.099
(0.030)

** 0.087
(0.030)

**

ln hrsworked 2 0.27
(0.028)

** 0.269
(0.028)

**

ln hrsworked 3 0.057
(0.025)

** 0.058
(0.025)

**

wagedwork 1 -0.018
(0.041)

-0.008
(0.041)

**

wagedwork 2 0.185
(0.044)

** 0.181
(0.044)

**

wagedwork 3 -0.165
(0.042)

-0.011
(0.041)

ln cpi 1 -5.449
(0.933)

**

ln cpi 2 4.849
(0.720)

**

ln cpi 3 0.444
(0.405)

shock 1 0.063
(0.031)

**

shock 2 -0.044
(0.030)

shock 3 0.003
(0.030)

province N Y Y N

age N N Y ** Y **

gender N N Y Y

marital status N N Y Y

religion N N Y Y

education N N Y ** Y **

constant 10.906
(0.032)

** 10.992
(0.050)

** 7.902
(0.224)

** 7.007
(3.713)

**

N 4,615 4,614 4,513 4,510

R2 0.185 0.212 0.406 0.417

Notes: Numbers in parentheses are standard errors. Asterisks indicate significance: * p < 0.10, ** p < 0.05.
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Table 8: SUR: Outcome Variable, log Earnings in 2000

ln earnings 3 (1) (2) (3) (4)

nonag 1 0.111
(0.161)

-0.048
(0.161)

0.014
(0.156)

0.038
(0.156)

nonag 2 -0.221
(0.176)

-0.237
(0.175)

** -0.408
(0.173)

** -0.403
(0.172)

**

nonag 3 0.173
(0.168)

0.163
(0.168)

0.071
(0.162)

0.044
(0.162)

nonag 1 * nonag 2 -0.059
(0.264)

-0.036
(0.264)

0.159
(0.256)

0.164
(0.255)

nonag 1 * nonag 3 0.729
(0.302)

** 0.723
(0.264)

** 0.592
(0.291)

** 0.586
(0.290)

**

nonag 2 * nonag 3 0.516
(0.291)

* 0.511
(0.291)

* 0.454
(0.283)

0.467
(0.282)

*

nonag 1 * nonag 2 * nonag 3 -0.065
(0.407)

-0.097
(0.402)

-0.216
(0.394)

-0.202
(0.392)

urban 1 0.294
(0.177)

0.001
(0.171)

0.020
(0.170)

urban 2 -0.192
(0.208)

-0.002
(0.202)

-0.055
(0.200)

urban 3 0.161
(0.152)

0.077
(0.148)

0.071
(0.146)

ln hrsworked 1 0.035
(0.060)

0.029
(0.060)

ln hrsworked 2 0.098
(0.055)

* 0.106
(0.055)

**

ln hrsworked 3 0.323
(0.050)

** 0.313
(0.050)

**

wagedwork 1 -0.149
(0.082)

* -0.139
(0.082)

*

wagedwork 2 0.069
(0.088)

0.075
(0.087)

wagedwork 3 0.308
(0.082)

** 0.303
(0.082)

**

ln cpi 1 -3.748
(1.854)

**

ln cpi 2 3.671
(1.431)

**

ln cpi 3 0.937
(0.805)

shock 1 0.201
(0.061)

**

shock 2 0.006
(0.059)

shock 3 -0.242
(0.060)

**

province N Y Y N

age N N Y ** Y

gender N N Y Y

marital status N N Y Y

religion N N Y Y

education N N Y ** Y **

constant 11.418
(0.057)

** 11.441
(0.091)

** 8.704
(0.443)

** 3.066
(7.377)

N 4,615 4,614 4,513 4,510

R2 0.083 0.087 0.168 0.175

Notes: Numbers in parentheses are standard errors. Asterisks indicate significance: * p < 0.10, ** p < 0.05.
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Table 9: Pooled OLS Regressions, With and Without Year Fixed Effects
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Table 10: Panel Regressions with Year Fixed Effects vs. TWFE
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Table 11: Estimated Selection Effects on the APG using TWFE
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ln_inc1_m (1) (2) (3) ln_inc1_m (1) (2) (3)
non-agriculture agriculture

age -0.001 -0.001 -0.001 age -0.012 ** -0.011 ** -0.012 **
0.002 0.002 0.002 0.002 0.002 0.002

gender 0.401 ** 0.402 ** 0.403 ** gender 0.513 ** 0.504 ** 0.502 **
0.032 0.032 0.032 0.082 0.082 0.083

educlevel2 0.351 ** 0.352 ** 0.352 ** educlevel2 0.237 ** 0.236 ** 0.238 **
0.013 0.013 0.013 0.035 0.035 0.034

marital_status -0.08 ** -0.078 ** -0.077 ** marital_status 0.021 0.015 0.017
0.214 0.021 0.021 0.038 0.038 0.038

urban 0.177 ** 0.176 ** 0.176 ** urban 0.262 ** 0.27 ** 0.269 **
0.03 0.03 0.03 0.087 0.086 0.086

wagedwork_main 0.144 ** 0.149 ** 0.147 ** wagedwork_main 0.239 ** 0.253 ** 0.245 **
0.034 0.034 0.034 0.069 0.069 0.069

ln_hrsworked_m 0.307 ** 0.309 ** 0.309 ** ln_hrsworked_m 0.435 ** 0.435 ** 0.432 **
0.028 0.028 0.028 0.064 0.064 0.064

nfarmbiz 0.017 0.024 0.025 nfarmbiz 0.129 ** 0.135 ** 0.135 **
0.026 0.026 0.026 0.064 0.064 0.065

farmbiz -0.091 ** -0.083 ** -0.078 ** farmbiz -0.134 * -0.112 -0.094
0.034 0.034 0.034 0.072 0.073 0.074

ruralborn -0.105 ** -0.102 ** -0.103 ** ruralborn -0.138 -0.122 -0.117
0.029 0.029 0.029 0.108 0.107 0.107

ln_cpi ** 1.447 ** 1.451 ** ln_cpi 2.599 ** 2.629 **
0.331 0.331 0.713 0.715

shock -0.03 shock -0.104 *
0.026 0.056

wave wave
2 0.513 ** 0.089 0.091 2 0.601 ** -0.154 -0.151

0.018 0.098 0.099 0.038 0.209 0.209
3 0.99 ** 0.463 ** 0.462 ** 3 1.044 ** 0.075 0.069

0.028 0.125 0.125 0.064 0.276 0.276

cons 8.796 ** 1.567 1.553 cons 7.926 ** -5.048 -5.153
0.166 1.666 1.665 0.38 3.629 0.209

clustered Y Y Y clustered Y Y Y
N 8,867 8,867 8.867 N 4,875 4,875 4,875
R2 0.333 0.335 0.335 R2 0.113 0.116 0.117

Table 12: Exclusion Restriction Evaluation in Outcome Equations

57



nonag_main (1) ag_main (2)

age -0.003 ** age 0.003 **
0.0004 0.0004

nfarmbiz 0.256 ** nfarmbiz -0.256 **
0.008 0.008

gender -0.175 ** gender 0.175 **
0.01 0.01

educlevel2 0.06 ** educlevel2 -0.06 **
0.004 0.004

marital_status -0.022 ** marital_status 0.022 **
0.006 0.006

urban 0.159 ** urban -0.159 **
0.01 0.01

wagedwork_main 0.153 ** wagedwork_main -0.153 **
0.01 0.01

ln_hrsworked_m 0.05 ** ln_hrsworked_m -0.05 **
0.006 0.006

farmbiz -0.289 ** farmbiz 0.289 **
0.01 0.01

ruralborn -0.016 * ruralborn 0.016 *
0.008 0.008

wave wave
2 -0.0009 2 0.0009

0.0057 0.0057
3 -0.028 ** 3 0.028 **

0.007 0.007

cons 0.421 ** cons 0.579 **
0.044 0.044

clustered Y clustered Y
N 13,742 N 13,742
R2 0.463 R2 0.463

Table 13: Exclusion Restriction Evaluation in Selection Equations
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In_inc1_m (1) (2) (3) ln_inc1_m (1) (2) (3)
non-agriculture agriculture

Step 2 Outcome Step 2 Outcome
gender 0.444 ** 0.445 ** 0.446 ** gender 0.601 ** 0.592 ** 0.578 **

0.029 0.029 0.029 0.093 0.093 0.093
educlevel2 0.339 ** 0.339 ** 0.339 ** educlevel2 0.195 ** 0.197 ** 0.203 **

0.011 0.011 0.011 0.035 0.035 0.036
marital_status -0.074 ** -0.072 ** -0.071 ** age -0.011 ** -0.01 ** -0.01 **

0.016 0.016 0.016 0.002 0.002 0.002
urban 0.151 ** 0.146 ** 0.144 ** urban 0.173 ** 0.188 ** 0.197 **

0.03 0.03 0.03 0.094 0.094 0.094
wagedwork_main 0.127 ** 0.127 ** 0.125 ** wagedwork_main 0.182 ** 0.193 ** 0.187 **

0.025 0.025 0.025 0.081 0.084 0.081
ln_hrsworked1_m 0.296 ** 0.297 ** 0.296 ** ln_hrsworked1_m 0.402 ** 0.404 ** 0.403 **

0.021 0.027 0.021 0.051 0.05 0.05
ln_cpi 1.513 ** 1.514 ** ln_cpi 2.601 ** 2.627 **

0.289 0.289 0.657 0.657
shock -0.03 shock -0.096 *

0.024 0.052

wave wave
2 0.517 ** 0.078 0.079 2 0.595 ** -0.159 -0.155

0.027 0.089 0.089 0.063 0.201 0.201
3 0.984 ** 0.438 ** 0.437 ** 3 1.062 ** 0.093 0.089

0.027 0.109 0.109 0.063 0.253 0.253

cons 8.888 ** 1.345 1.349 cons 7.743 ** -5.216 -5.276
0.134 1.449 1.449 0.283 3.287 3.286

Step 1: Selection Step 1: Selection
age -0.014 ** -0.013 ** -0.014 ** age 0.01 ** 0.01 ** 0.01 **

0.001 0.001 0.001 0.001 0.001 0.001
nfarmbiz 1.12 ** 1.129 ** 1.128 ** fambiz 1.109 ** 1.11 ** 1.103 **

0.03 0.031 0.031 0.03 0.03 0.03
gender -0.853 ** -0.853 ** -0.846 ** gender 0.904 ** 0.904 ** 0.903 **

0.037 0.037 0.037 0.036 0.036 0.036
educlevel2 0.257 ** 0.261 ** 0.265 ** educlevel2 -0.309 ** -0.31 ** -0.311 **

0.129 0.014 0.014 0.014 0.014 0.014
marital_status -0.074 ** -0.074 ** -0.067 ** marital_status 0.134 ** 0.134 ** 0.132 **

0.019 0.019 0.019 0.019 0.019 0.019
urban 0.933 ** 0.934 ** 0.926 ** urban -0.689 ** -0.689 ** -0.689 **

0.031 0.031 0.031 0.032 0.032 0.032
wagedwork_main 0.868 ** 0.872 ** 0.853 ** wagedwork_main -0.087 ** -0.087 ** -0.084 **

0.032 0.032 0.032 0.03 0.03 0.03
ln_hrsworked1_m 0.244 ** 0.242 ** 0.237 ** ln_hrsworked1_m -0.195 ** -0.195 ** -0.194 **

0.024 0.024 0.024 0.024 0.024 0.024
ruralborn -0.261 ** -0.255 ** -0.252 ** ruralborn 0.201 ** 0.201 ** 0.2 **

0.042 0.042 0.042 0.043 0.043 0.043
ln_cpi -0.226 ** -0.201 ** ln_cpi 0.011 ** 0.005

0.086 0.087 0.085 0.085
shock -0.182 ** shock 0.047 *

0.028 0.029

cons -0.979 ** 0.149 0.099 cons -0.523 ** -0.579 -0.561
0.156 0.459 0.461 0.158 0.458 0.459

Inverse Mills Ratio Inverse Mills Ratio
λ -0.138 ** -0.142 ** -0.143 ** λ 0.245 ** 0.226 ** 0.202 *

0.052 0.052 0.052 0.105 0.105 0.106
rho -0.133 -0.137 -0.138 rho 0.139 0.129 0.116

sigma 1.038 1.036 1.036 sigma 1.756 1.752 1.749
N 13,742 13,742 13,739 N 13,742 13,742 13,739

Selected 8,867 8,867 8,864 Selected 4,875 4,875 4,875
Wald chi2 3,777.43 ** 3,868.35 ** 3,867.37 ** Wald chi2 523.65 ** 540.57 ** 544.21 **

ruralborn

Exclusion Restriction (Nonag)
age 
nfarmbiz

Exclusion Restrictions (Ag)
marital_status
farmbiz

Table 14: Heckman Two-Step Estimation (Pooled IFLS 1-3 Waves)
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In_inc1_m (1) (2) (3)
pooled, year fixed effect, Heckman twostep

nonag
selection effect ( λ n ) -0.138 ** -0.142 ** -0.143 **

0.052 0.052 0.052

ag
selection effect (λ a ) 0.245 ** 0.226 ** 0.202 *

0.105 0.105 0.106

observed APG 0.654 ** 0.656 ** 0.651 **
pooled, year fixed-effect & clustered 0.034 0.034 0.033

Selection effect explains observed APG
nonag 21.1% 21.6% 22.0%

ag 37.5% 34.5% 31.0%

Table 15: Heckman Selection Effect on APG (Pooled)
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xthechman (1) (2)

Outcome Equation
ln_inc1_m

gender 0.451 ** 0.651 **
0.041 0.033

educlevel2 0.375 ** 0.267 **
0.014 0.012

marital_status -0.02 -0.067 **
0.019 0.019

urban 0.204 ** -0.034
0.042 0.03

wagedwork_main 0.056 * -0.033
0.029 0.028

lm_hrworked1_m 0.258 ** 0.206 **
0.023 0.021

ln_cpi 2.486 **
0.059

cons 9.241 ** -2.723 **
0.156 0.329

Selection Equation
nonag_main

age -0.029 ** -0.024 **
0.003 0.002

nfarmbiz 1.303 ** 1.21 **
0.054 0.046

gender -1.319 ** -1.466 **
0.094 0.075

educlevel2 0.413 ** 0.357 **
0.029 0.025

marital_status -0.112 ** -0.117 **
0.041 0.035

urban 1.787 ** 1.553 **
0.075 0.059

wagedwork_main 1.128 ** 0.944 **
0.058 0.051

ln_hrsworked1_m 0.347 ** 0.312 **
0.041 0.035

cons -0.909 ** -0.197
0.283 0.564

var(e.ln_inc1_m) 0.972 0.845
0.019 0.015

var(ln_inc1_m[i]) 0.266 0.412
0.019 0.021

var(nonag_main[i]) 2.45 2.314
0.17 0.148

corr(e.nonag_main, e.ln_inc1_m) -0.235 ** -0.973
0.093 .

corr(nonag_main[i], ln_inc1_m[i]) 0.166 ** -0.241 **
0.08 0.148

N 13,742 13,742
Selected 8,867 8,867

# of groups 4,615 4,615
Wald chi2 1,602.49 ** 3,124.52 **

*Note: Convergence not achieved in (1) and (2)

Exclusion Restriction (Nonag)
age 
nfarmbiz

Table 16: Panel Heckman Estimation using xtheckman (IFLS Waves 1–3)
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A Appendix: Background on Suri’s Empirical Approach

This appendix provides background on the empirical approach of Suri (2011), which this

paper adapts to study agricultural productivity gaps. While the main text explains how the

framework is modified for the APG context, this appendix reviews Suri’s original application

to technology adoption in Kenya and outlines the underlying logic of the correlated random

coefficient (CRC) model. The purpose is to provide readers less familiar with this method

with a clear understanding of its origins, intuition, and technical foundations. Readers

already acquainted with Suri’s work may skip directly to Section 3, where the adapted

framework is presented.

To address the two challenges identified in the previous subsection, I adopt the Correlated

Random Coefficient (CRC) model, as employed by Tavneet Suri (2011), when explaining

the low adoption rates of hybrid seeds in Kenya, despite their high yields. This empirical

approach allows me to estimate individual sorting based on the sector-specific unobserved

abilities without imposing parametric distributional assumptions.

In Suri’s empirical strategy, expected potential returns determine each farmer’s adoption

decision on hybrid seeds, which follows Heckman and Vytlacil (1998) under the generalized

Roy’s model framework (Roy, 1951); what’s more, this method does not assume any func-

tional form for unobserved heterogeity by exploring the fact that farmer’s adoption choice

history contains the information on farmer’s net benefits from using hybrid seeds, which is in

the spirit of Chamberlain’s estimation of fixed-effect in panel data (Chamberlain, 1982, 1984).

This framework consists of two key appealing features: First, it considers each farmer’s net

benefit as a deviation from the average net benefit of hybrid seed adoption, which explic-

itly models heterogeneity. Second, it exploits the revealed comparative advantages that can

be projected by hybrid seeds adoption trajectories, which allows for estimating the selec-

tion effect without distributional assumptions. As a result, Suri’s (2011) empirical approach

is preferable for tackling the two challenges that the research question of this paper must

overcome.
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B Selection Effect and Map to the Classic Roy Model

This appendix derives the link between the CRC model selection parameter β and the selec-

tion terms in the classic Roy framework represented in Borjas (1987). To further illustrate

what exactly the selection effect, β, is measured by this model, I first map it to different

types of selection in the classic Roy model framework. Then, I discuss how the selection is

determined by the variance of the latent skills in each sector and their correlations.

In this model, individual sorting based on the unobserved comparative advantage is

summarized by the structural parameter β. Let σn = V ar(θni ), σa = V ar(θai ), and σna =

COV (θni , θ
a
i ). Then, bn and ba as coefficients for equations (18) and (19) take form, as shown

in equation (37). Therefore, in equation (38), the numerator σ2
n − σna is the covariance-

adjusted dispersion of latent absolute advantage in non-agriculture; the denominator σna−σ2
a

is the analogous term for agriculture. Intuitively, the selection effect, β, measures the relative,

covariance-adjusted dispersion of unobserved absolute advantages in non-agriculture relative

to agriculture — i.e., how much more the non-agriculture sector loads on the latent skill

variation once the skill correlation between the two sectors is netted out.

β ≡ bn
ba
− 1

=
(σ2

n − σna)/(σ
2
n + σ2

a − 2σna)

(σna − σ2
a)/(σ

2
n + σ2

a − 2σna)
− 1 (37)

=
σ2
n − σna

σna − σ2
a

− 1 (38)

Under the assumption of a joint normal distribution for the latent skills, the inverse

Mills ratio (IMR) can be derived as a selection-bias factor that summarizes the selectivity

of the sample and adjusts the results by serving as a proxy for latent abilities. Therefore,

the coefficient of the IMR in a regression represents the selection effect that arises when a

joint-normal distribution is imposed on the latent skills.

Borjas (1987) studies the earnings and immigration choices in the United States and

assumes a joint normal distribution for latent skills between two countries. Under the classic

Roy’s model framework, Borjas captures the selection effect and bias correction by Q1 and

Q0, which are defined as the differential earnings between the average immigrants and the

average in the country of destination (referred to as Country 1) and in the country of origin
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(referred to as Country 0), respectively. As shown in the equations (39) and (40), ϕ(z)
1−Φ(z)

is

IMR and 1/σν is the scaling factor for IMR as it is transformed to the standard normal when

applying the closed-form solution. Hence, the selection effect in Borjas’ paper is captured by

the coefficients, σ0σ1(ρ0,1− σ0

σ1
) and σ0σ1(

σ1

σ0
− ρ0,1) for the country of origin and destination,

respectively.

In Borjas (1987), the Roy framework is applied to immigration: country 0 represents

the origin country and country 1 the destination (United States). In my APG setting,

these roles naturally map to agriculture (a) as the origin sector and non-agriculture (n) as

the destination. Borjas defines two selection terms, Q0 and Q1, which measure differential

earnings between immigrants and sectoral averages in the origin and destination, respectively:

Q1 =
σ0σ1

σν

(
σ1

σ0

− ρ0,1

)(
ϕ(z)

1− Φ(z)

)
(39)

Q0 =
σ0σ1

σν

(
ρ0,1 −

σ0

σ1

)(
ϕ(z)

1− Φ(z)

)
(40)

These two coefficients can be further expressed as equations (41) and (42) by multiplying

σ0σ1 to the terms within the first bracket in each equation (39) and (40), respectively. The

country 0 in Borjas’ paper corresponds to the agricultural sector, and country 1 represents

the nonagricultural sector in my setting. Notably, β in my model includes the selection

effect formulation in the classic Roy model. Instead of measuring selection in each sector

separately, β refers to the differences in the selection effects between two sectors, with the

selection effect in the agricultural sector serving as a benchmark.

σ0σ1

(
σ1

σ0

− ρ0,1

)
= σ2

1 − ρ0,1σ0σ1

= σ2
1 − σ0,1 (41)

σ0σ1

(
ρ0,1 −

σ0

σ1

)
= ρ0,1σ0σ1 − σ2

0

= σ0,1 − σ2
0 (42)

Analogously, I define two distribution-free counterparts in my model: ∆a for agriculture

and ∆n for non-agriculture. These capture the differential earnings between sectoral switch-

ers and the corresponding sectoral averages, just as Q0 and Q1 do in Borjas. The critical

difference is that ∆a and ∆n do not rely on a joint-normality assumption on latent skills.
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Instead, they are constructed directly from the Roy-style choice problem. Formal definitions

and derivations are provided in Appendix C, but for interpretation it suffices to note that

(∆a,∆n) serve as the natural analogues to (Q0, Q1) in a distribution-free setting.

Under a weak assumption on monotone sorting, the selection effects in this paper can

be mapped into the positive selection, negative selection, and refugee cases illustrated in

Borjas (1987). The derivation of the conditions for the different types of selection effect β in

Appendix C. The summary of the conditions compared to those in Borjas (1987) is in Table

17

Table 17: Selection Types in Roy vs. CRC Model

Selection Type Roy Model (Borjas, 1987) CRC (Lemieux, 1998)

Positive

Selection

ρ0,1 >
σ0
σ1

, σ1 > σ0

Q0 > 0, Q1 > 0

In both upper tails

β > 0 ⇐⇒ ρna >
σa
σn

, σn > σa

∆a > 0, ∆n > 0

In both upper tails

Negative

Selection

ρ0,1 <
σ0
σ1

, σ0 > σ1

Q0 < 0, Q1 < 0

In both lower tails

−1 < β < 0 =⇒ ρna <
σa
σn

∆a < 0, ∆n < 0

In both lower tails

Refugee

Selection

ρ0,1 < min

{
σ0
σ1

,
σ1
σ0

}
Q0 < 0, Q1 > 0

β < −1 =⇒ ρna <
σa
σn

∆a < 0, ∆n > 0

Null on

One-Side

No such case
β = −1 =⇒ ρna <

σa
σn

∆a < 0, ∆n = 0

Notes: In Borjas’ paper, 1 refers to the country of destination, 0 to the country of origin. In this paper, n is non-agriculture

and a is agriculture. ∆a and ∆n are the differential earnings between the average of those who choose to switch to

non-agriculture and the average in agriculture and non-agriculture, respectively.

When β > 0, indicating positive selection—individuals are drawn from the upper tail of

agriculture and fall in the upper tail of non-agriculture. However, when β < 0, there are

three cases: (1) If −1 < β < 0, workers are drawn from the lower tail in agriculture and

contribute to the lower tail in non-agriculture, hence negative selection. (2) If β < −1, it

is drawn from the lower tail in agriculture, but those workers earn higher wages than the

average workers in non-agriculture. This case would occur when the negative selection is
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sufficiently large. (3) If β = −1, the switchers from agriculture earn the same as the average

workers in non-agriculture, which is not in Borjas (1987).

Essentially, the selection effect and unobserved comparative advantages formulated by

Lemieux (1998) capture the equivalent selection effect from unobserved heterogeneity that

affects individuals’ choices, as modelled in the classic Roy choice framework. The difference

is that this selection effect is not the coefficient of IMR, thereby allowing for the flexibility to

estimate underlying unobserved comparative advantages, as opposed to assuming a specific

functional form.

C Appendix: Sector Choice and Differential Returns

This appendix lays out the sector choice individual faces in the Roy’s model framework and

then defines the differential returns sector switchers relative to the average earnings in each

sector, ∆n and ∆a.

I start from the potential earnings representation in Section 3.3 and make the individual

choice rule explicit under the Roy model choice framework. We then define the differential

earnings objects ∆n and ∆a and show how they correspond to Borjas’s Q1 and Q0.

Step 1. Potential earnings in each sector. Recall the log potential earnings for indi-

vidual i in sector j ∈ {n, a} at time t (see Eqs. (20)–(21)):

wn
it = δnt + (1 + β) θi + τi + Xitγ

n + ξnit, (26)

wa
it = δat + θi + τi + Xitγ

a + ξait. (27)

Here, θi is the unobserved comparative advantage (sector-relevant, time-invariant), τi is the

sector-invariant component (irrelevant for choice), β captures the relative loading of latent

skills across sectors, Xit are observables, and ξjit are transitory shocks with zero conditional

mean.
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Step 2. Sectoral choice rule. Individual i chooses non-agriculture (Dit = 1) iff wn
it ≥ wa

it.

Using (26)–(27):

Dit = 1 ⇐⇒ (δnt − δat ) + β θi + Xit(γ
n − γa) + (ξnit − ξait) ≥ 0. (43)

Conditional on observables, sorting is governed by the comparative advantage term β θi; the

common component τi cancels in the difference.

Step 3. Differential earnings objects. Define selection premia as differences between

conditional and unconditional sector means:

∆n ≡ E[wn | D = 1, X]− E[wn | X] , (44)

∆a ≡ E[wa | D = 0, X]− E[wa | X] . (45)

Intuitively, ∆n measures how the earnings of those who select into non-agriculture differ

from the non-agriculture sector mean; ∆a is the analogous object for agriculture.2

Using (26)–(27) and the choice rule (43), we can write

∆n = (1 + β)
(
E[θi | D = 1, X]− E[θi | X]

)
, (46)

∆a =
(
E[θi | D = 0, X]− E[θi | X]

)
. (47)

Thus, both selection premia are linear in the comparative advantage component; β scales the

non-agriculture premium relative to agriculture.

Step 4. Connection to Borjas (1987). In the Borjas–Roy migration setting, country 1

(destination) and 0 (origin) abilities are jointly normal with variances σ2
1, σ

2
0 and covariance

σ01. The standard selection corrections are

Q1 =
σ0σ1

σν

(
σ1

σ0

− ρ01

)
λ(z), Q0 =

σ0σ1

σν

(
ρ01 −

σ0

σ1

)
λ(z), (48)

where λ(z) = ϕ(z)/[1− Φ(z)] is the inverse Mills ratio and σν > 0 is a scale from the latent

index. The coefficients on the IMR are

σ2
1 − σ01︸ ︷︷ ︸

destination (1)

, σ01 − σ2
0︸ ︷︷ ︸

origin (0)

. (49)

2We suppress t and condition on X to lighten notation. The transitory shocks ξjit integrate out by zero

conditional mean.
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Identify agriculture with origin (0↔a) and non-agriculture with destination (1↔n), so that

σ2
1 − σ01 ←→ σ2

n − σna, σ01 − σ2
0 ←→ σna − σ2

a. (50)

From Section 3.2, the CRC selection parameter satisfies

β + 1 =
σ2
n − σna

σna − σ2
a

. (51)

Comparing (49)–(50) with (51) yields the algebraic identity

β + 1 =
IMR coefficient at destination (non-agriculture)

IMR coefficient at origin (agriculture)
(52)

up to a common positive scale that cancels in the ratio.3

Finally, observe that (46)–(47) are distribution-free analogues of Borjas’s Q1, Q0:

∆n ↔ Q1, ∆a ↔ Q0, (53)

where the CRC framework replaces the IMR with conditional means of θi governed by the

monotone selection rule (43).

D Appendix: Further Analysis of β

This appendix examines how the variance and correlation of latent abilities between sectors

determine selection. I can rewrite β in equation (38) into the expression in equation (54).

Define r as the ratio of the standard deviation of unobserved absolute advantages between

two sectors, as in equation (55), which represents how widely spread the absolute advantages

in nonagriculture are relative to those in agriculture. Then, β can be further expressed as in

equation (56), where ρ is the correlation coefficient of the covariance of absolute advantages

between agriculture and nonagriculture, taking values −1 ≤ ρ ≤ 1.

3Any multiplicative factors such as 1/σν and λ(z) in (48) are common across Q1, Q0 conditional on the

selection index and therefore cancel in the ratio.
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β =
σ2
n − σna

σna − σ2
a

− 1

=
(σ2

n − σna)− (σna − σ2
a)

σna − σ2
a

=
σ2
n + σ2

a − 2σna

σna − σ2
a

(54)

r ≡ σn

σa

(55)

β =
σ2
n + σ2

a − 2σna

σna − σ2
a

=
r2 + 1− 2ρr

ρr − 1
(56)

∂β

∂ρ
=

r(1− r2)

(ρr − 1)2
(57)

Given a fixed r in the market, meaning how spread unobserved absolute advantages in

nonagriculture relative to agriculture, the partial derivatives of β with respect to ρ, shown

in equation (57), indicate four cases:

(i) If r > 1, then β decreases in ρ;

(ii) If 0 < r < 1, then β increases in ρ;

(iii) If r = 0, then β = −1 for all feasible ρ;

(iv) If r = 1, then β = −2 for all feasible ρ < 1.

Since r is the ratio of standard deviations, its value will always be non-negative. In the

case (i), this ratio of spread between latent absolute advantages is sufficiently large (r > 1).

Holding r constant, as those latent skills become more similar across sectors (an increase

in ρ), it dulls the comparative advantage in the respective sector that workers enjoy and

weakens the selection effect; hence, β falls. In the case (ii), the dispersion of latent absolute

advantages is alike in two sectors (0 < r < 1). For a fixed r, as the latent skills become more

transferable across two sectors (a rising ρ), it raises the comparative advantage in the sector

where workers don’t possess and strengthens the selection effect; thus, β rises. The remaining
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two cases are not very interesting. Both cases will make the selection effect degenerate into a

constant number, where case (iii) is when absolute advantages in nonagriculture are without

any dispersion, and case (iv) is when the spread of latent skills is precisely the same in two

sectors.

Furthermore, the values of the selection effect β can provide some policy insights. When

β > 0, the selection effect is bounded from below, β ∈ [r − 1,+∞), which can only occur

in the positive selection case. The minimum value of the selection effect is the differential

spread of latent skills between sectors after removing the correlation coefficient at the upper

boundary (ρ = 1). When β < 0, there are two cases: (i) If the spreads of latent skills across

sectors are sufficiently large (r > 1), the selection flips to a negative value when passing the

threshold, 1
r
. In this case, β is bounded from above, β ∈ (−∞,−(r + 1)], where the least

negative value is at two skills perfectly negatively correlated (ρ = −1). (ii) If the spreads of

latent skills are similar (0 < r < 1), the selection is bounded, β ∈ [−(r + 1), r − 1].

The threshold ρ = 1
r
is where the positive and negative selection switches. In the envi-

ronment where the spread in two sectors is sufficiently large, when the correlation of latent

skills approaches the threshold, the selection effect becomes a large positive number on the

right side and a large negative number on the left side. In the environment, the dispersions

in latent skills are similar, and the selection effect is tightly bound by the correlation coef-

ficient ρ ∈ [−1, 1]. Policies promoting transferable skills can influence the correlations, and

interventions enhancing educational levels may bridge the disparities in latent skills between

the two sectors. As the selection effect intensifies at the threshold, this insight can help

design policies that align the selection effect with the main policy goals, thereby avoiding

unintended consequences arising from the selection effect.

E Appendix: Recovering Structural Parameters

This appendix is to demonstrate how structure parameter unobserved comparative advan-

tage, θi, is recovered in a simplified two-period no covariant model. θi is unobserved in

the data. I will, now, demonstrate how the structural parameters of interest can be re-

covered without imposing distributional assumptions. Following the procedure proposed by
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Suri (2011), I present the recovery of structural parameters in the simplest setting, without

covariates, over two periods, as expressed in equation (58).

wit = η + αDit + θi + βθiDit + uit (58)

where δat = η ∀t, α ≡ δnt − δat ∀t, and uit ≡ τi + ϵit.

I can do this because structural parameters β and θi do not enter covariates in the main

estimation equation (23). First, I disentangle the dependency between θi and Dit by lin-

early projecting θi onto the entire history of sector choices and their interaction terms. This

method was first developed by Chamberlain (Chamberlain, 1982, 1984) to estimate individ-

ual unobserved fixed effects in panel data. Later, Suri’s (2011) generalized Chamberlain’s

fixed-effect estimation by including interactions of choice histories to purge the dependency

between unobserved abilities and individual choices fully. Chamberlain and Suri treat this as

a purely technical step to separate θi into two parts: one is related to sectoral choice (Dit),

and the remainder is orthogonal to the sectoral choices. Since individuals choose, Dit, is a

dummy variable, the projection θi onto a complete history and interaction terms will be a

saturated model to purge the correlation between θi and Dit, which is formally expressed in

the equation (59). However, I interpret the equation (59) as an individual choice trajectories

that reveal her unobserved comparative advantages, θi.

θi = λ0 + λ1Di1 + λ2Di2 + λ3Di1Di2 + νi (59)

Next, I substitute equation (59) into the wage equation (58) to obtain the log earnings

for each period as a function of choice histories and their interactions, see equations (60)

and (61).

wi1 = (η + λ0) + (λ1(1 + β) + α + βλ0)Di1

+ λ2Di2 + (λ3(1 + β) + βλ2)Di1Di2 + (νi + βνiDi1 + ui1) (60)
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wi2 = (η + λ0) + λ1Di1

+ (λ2(1 + β) + α + βλ0)Di2 + (λ3(1 + β) + βλ1)Di1Di2

+ (νi + βνiDi2 + ui2) (61)

Since sector choices are observed in each period, I can run a reduced-form regression

of earnings on the choice history and their interactions in this stacked system of equations

(60) and (61). To simplify the coefficients in the reduced form regression in equations (60)

and (61), I can rewrite them as equations (62) and (63).

wi1 = η + ϕ1Di1 + ϕ2Di2 + ϕ3Di1Di2 + eit (62)

wi2 = η + ϕ4Di1 + ϕ5Di2 + ϕ6Di1Di2 + eit (63)

The reduced form regression of each period earnings on the entire history of the sector

choice, including interaction terms across periods, will obtain reduced form coefficients ϕ1,

ϕ2, ϕ3, ϕ4, ϕ5, and ϕ6. Combining equations (60) to (63), the information that I have learned

from the reduced form coefficients can yield the following equations:

ϕ1 = λ1(1 + β) + α + βλ0 (64)

ϕ2 = λ2 (65)

ϕ3 = λ3(1 + β) + βλ2 (66)

ϕ4 = λ1 (67)

ϕ5 = λ2(1 + β) + α + βλ0 (68)

ϕ6 = λ3(1 + β) + βλ1 (69)

Equations (64) to (69) explicitly express the reduced-form coefficients as functions of

underlying structural parameters. Solving this system of equations, I can estimate five

underlying parameters: λ1, λ2, λ3, α, and β. Under the condition that λ1 ̸= λ2, the parameter

β is identified. The first objective is to obtain the structural parameter β, which captures the

extra returns of comparative advantages in nonagriculture, i.e., the selection effect. Then, the
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second task is to estimate the distribution of comparative advantage θi by using equation (59)

and normalizing
∑

θi = 0. Specifically, I can obtain λ0 by using λ0 = −λ1Di1 − λ2Di2 −

λ3Di1Di2. It is noted that λ1, λ2, and λ3 can be obtained by solving the system of equations,

and sectoral choices are observed in the data. Once λ0 is available, I can use (59), λ’s, and

Dit’s to estimate the distribution of the unobserved comparative advantage, θi.

F Appendix: Revealed Comparative Advantages

This appendix shows that the projection of θi can be interpreted as revealed comparative

advantages, which contain rich information empirically in the context of Indonesia.

Although Chamberlain (1982, 1984) and Suri (2011) explicitly emphasize that equation

(59) is primarily a technical device for eliminating correlation between θi and choice variable

Dit, it can equivalently be interpreted as a regression of the latent comparative advantage

θi on indicators of the choice trajectory (choices at each t and their interaction). In this for-

mulation, the fitted values θ̂i represent the component of individual underlying comparative

advantage explained by the trajectory, thereby providing an empirical measure of unobserved

heterogeneity across groups.

Drawing loosely on the intuition of revealed preference theory (Samuelson, 1938, 1948),

sectoral choices can be interpreted as revealing information about underlying comparative

advantages. In this context, individuals implicitly conduct a cost–benefit analysis, where po-

tential earnings in each sector represent are the benefits, and constraints such as schooling,

time, and ability represent the costs. Over three waves, each agent’s sequence of sectoral

choices yields one of eight possible trajectories (23 = 8), reflecting how unobserved com-

parative advantages shape decisions. Although this analogy to revealed preference is only

suggestive rather than a formal extension, the observed choice histories and their interactions

provide an empirical basis for capturing latent abilities. I therefore refer to the fitted values

from this procedure, θ̂i, as revealed comparative advantages.

Figures 10 and 11 illustrate the composition of education levels and waged work across

the eight trajectory groups, denoted by t000, t001, t010, t100, t110, t101, t011, t111, where 1

indicates non-agriculture and 0 indicates agriculture in a given period. For example, t000
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Figure 10

corresponds to staying in agriculture in all three waves, while t111 corresponds to remaining

in non-agriculture. Figure 10 shows clear contrasts: non-agricultural stayers (t111) are

disproportionately drawn from individuals with education beyond primary school, whereas

agricultural stayers (t000) contain a higher share of unschooled individuals. Sector switchers,

by contrast, display larger shifts in educational attainment across waves. A parallel pattern

emerges in Figure 11: switchers exhibit greater transitions between self-employment and

waged work, while stayers tend to remain more stable in their employment types.

Figures 12 and 13 provide additional evidence that choice trajectories reveal information

about underlying comparative advantages. A well-documented puzzle in the APG literature

using IFLS data is that individuals who move from non-agriculture to agriculture appear to

experience substantial earnings losses (Pulido and Świecki, 2019; Hamory et al., 2021). When

earnings are instead examined by trajectory groups, as shown in Figure 12, the distributions

of log earnings for all groups shift to the right over time, indicating earnings growth for

each trajectory group. This perspective suggests that trajectory groups differ in their initial

mean earnings, reflecting underlying abilities and costs across sectors. When outcomes
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Figure 11

are aggregated to sector-level averages, these initial differences are masked, creating the

appearance of earnings losses that are not evident once trajectories are taken into account.

Figure 13 further shows that hours worked remain relatively stable for stayers but fluc-

tuate for switchers. Taken together, these results suggest that trajectory groups capture

systematic heterogeneity consistent with comparative advantages on which sectoral choices

are made.
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Figure 12: Log Earnings Distribution in 3 Waves by Choice Trajectory

ht

Figure 13: Log Hours Worked Distribution in 3 Waves by Choice Trajectory

76



G Appendix: Model Structures and Estimation De-

tails

G.1 Heckman Two-step Estimation (Pooled Panel)

The canonical Heckman two-step estimator is designed to correct for selection bias in cross-

sectional data. To evaluate the implications of parametric assumptions on the selection effect

in the APG context, I estimate the selection-corrected wage equations under the assump-

tion of joint normality in unobserved sectoral abilities using the Heckman two-step method

(Heckman, 1979).

This approach, when applied to pooled panel data from the first three waves of IFLS (used

in this paper), reveals a statistically significant selection effect. Recall the main result in the

present paper: the selection effect due to comparative advantages at the individual level does

not impact the sectoral productivity gap significantly when avoiding such a functional form

assumption. By imposing a joint normal distribution on the latent skills, the pool sample

from the same dataset finds that individual comparative advantages explain a significant

portion of the sectoral productivity gap, which is consistent with the finding in Pulido and

Świecki (2019) with the same distributional assumptions.

Abstracting from the time dimension, the Roy model framework is based on the assump-

tion that an individual i has potential earnings yni and yai in the non-agricultural sector (n)

and the agricultural sector (a), respectively.

yni = Xiγ
n + ϵni (70)

yai = Xiγ
a + ϵai (71)

This setup mirrors the Roy model and is structurally comparable to the potential out-

comes framework in Section 3. However, the estimation strategy differs: Heckman’s method

treats sectoral choice as endogenous and estimates the selection correction term explicitly,

while the main framework in this paper treats sectoral choice as informative of comparative

advantage and avoids strong distributional assumptions
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In Heckman’s estimation, for an individual who chooses to work in the non-agricultural

sector, the selection equation governing sectoral choice is given by:

Di =

1 if Pr(yni > yai |Xi = x)

0 otherwise

(72)

Therefore, the probability of choosing the nonagricultural sector (n) follows:

Pr(Di = 1|Xi = x) = Pr(yni > yai |Xi = x)

= Pr(Xiγ
n + ϵni > Xiγ

a + ϵai )

= Pr(ϵai − ϵni < Xi(γ
n − γa))

(73)

Assuming sector-specific unobserved abilities ϵni and ϵai are jointly normally distributed,

the difference in unobserved abilities ϵni −ϵai also follows a normal distribution. The resulting

selection equation can be estimated as a probit model. Let γ̂ denote the estimated coefficients

from this probit regression of the sectoral choice equation. Then, IMR for individual i,

denoted λi), is given by:

λi =
ϕ(X ′

iγ̂)

Φ(X ′
iγ̂)

(74)

where ϕ(.) and Φ(.) refer to the standard normal density and Cumulative Density Func-

tion (CDF), respectively. Note that the derivation of IMR is well known and can refer

to Heckman’s seminal paper (1979). The IMR enters the outcome equation to correct for

selection bias as follows:

yi = Xiγ
n + λiβ + ui for Di = 1 (75)

In this outcome equation (75), β captures the direction and magnitude of selection bias,

and yi is an individual’s observed wage working in the non-agricultural sectors, which is only

observed for those with Di = 1. Xi is a vector of observed characteristics, and λi is the

estimated IMRs coming out of the selection equation. β captures direction and magnitude

of selection bias.
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To bolster identification, I incorporate exclusion restrictions Zi in the selection equa-

tions but omit them from the outcome equation. This yields the augmented selection equa-

tion (76):

Pr(Di = 1|Xi = x) = Pr(yni > yai |Xi = x, Zi = z)

= Pr(Xiγ
n + Zn

i γ
n
z + ϵni > Xiγ

a + Za
i γ

a
z + ϵai )

= Pr(ϵai − ϵni < Zn
i γ

n
z − Za

i γ
a
z +Xi(γ

n − γa))

(76)

In practice, the first-stage probit regression uses Zi as exclusion restrictions, the vari-

ables that affect sectoral choice but are assumed not to directly influence wages. For non-

agricultural wage estimation, valid exclusion restrictions include age and non-farm business

ownership. For the agricultural sector, the exclusion restrictions are rural-born, marital

status, and farm business ownership. Valid exclusion restrictions are supported empirically

(see Tables 12 and 13). The three regressions on the left of Table 12 show that the two

variables, age and non-farm business, are not significant in the outcome equation for the

non-agricultural workers; the left regression on Table 13 indicate they are both highly rele-

vant to the sectoral decision in the selection equation. The evidence for exclusion restrictions

for agriculture is on the right side of Tables 12 and 13.

Columns (1) to (3) in Table 14 present the Heckman two-step estimates for the non-

agricultural sector. The table is divided into three blocks: (i) outcome equation estimates, (ii)

selection equation estimates, and (iii) IMR coefficients. Column (1) includes basic covariates;

column (2) adds log CPI; and column (3) includes both log CPI and a shock variable. All

regressions include time fixed effects. Across all specifications, the IMR coefficient is negative

and statistically significant, indicating adverse selection into the non-agricultural sector. The

estimated selection effects are -0.138, -0.142, and -0.143, respectively. Selection effects for

agricultural workers are estimated in a similar manner. The right block of Table 14, labelled

as agriculture, shows corresponding regressions for agricultural workers under specifications

(1) to (3), mirroring those used in the non-agricultural sector. In all three specifications, the

IMR coefficients are positive and statistically significant, ranging from 0.202 to 0.245.

The wage for the agricultural workers can also be observed in the data. Similarly, the

selection effect for the agricultural workers can be estimated. The right side of Table 12 and
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Table 13 demonstrate that three variables, marital status, farm business, and rural born, are

suitable exclusion restrictions for the agricultural sector. Table 14 presents the estimation

of the Heckman selection correction for the agricultural workers. The three columns on the

right side of the table correspond to three specifications used in the non-agriculture sector.

On average, the IMR coefficient for agricultural workers is positive and statistically sig-

nificant, with estimated values of 0.245, 0.226, and 0.202 across specifications (Table 14).

Taken together, under the assumption of bivariate normality in unobserved abilities, the

selection effect in the non-agricultural sector is negative and statistically significant (ranging

from -0.138 to -0.143), while that in the agricultural sector is positive and significant (rang-

ing from 0.202 to 0.245). These magnitudes remain stable across model specifications, both

with and without additional controls (log CPI and shock).

To benchmark these magnitudes, Column (3) of Table 9 estimates an average productivity

gap of 0.654 using a pooled OLS regression with the same covariates as column (1) of Table

14. This implies that selection effects, as captured by the Heckman two-step estimator,

explain approximately 21.1% to 37.5% of the observed APG in the baseline specification,

and between 22% and 31% in the most complete specification (see Table 15).

This finding echoes the conclusion in Pulido and Świecki (2019), who report substantial

selection effects under joint normality. In contrast, the empirical strategy employed in this

paper imposes no functional form assumptions on unobserved heterogeneity and finds no

significant selection effect. This divergence underscores the sensitivity of selection estimates

to distributional assumptions.

G.2 Heckman Selection Estimation with Panel Structure (xtheck-

man)

To evaluate whether panel structure affects the magnitude or direction of selection estimates

under joint normality, I estimate the selection-corrected wage equation using Stata’s xtheck-

man command. This approach extends the Heckman framework to panel data and fits a

full maximum likelihood model accounting for both unobserved individual heterogeneity and

time-varying error components.
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Under the panel Roy model, individual i’s potential log earnings in sector s ∈ {n, a} at

time t are given by:

ynit = Xitγ
n + θni + ϵnit (77)

yait = Xitγ
a + θai + ϵait (78)

where (Xit) are observed characteristics, (θsi ) are unobserved time-invariant individual

sector-specific abilities, and (ϵsit) are time-varying unobserved shocks. The model assumes

that both (θni , θ
a
i ) and (ϵnit, ϵ

a
it) follow a joint normal distribution across sectors.

Sectoral choice at each period is modelled by a latent selection equation:

Dit =

1 if ynit > yait

0 otherwise

(79)

Observed wages for those working in the non-agricultural sector (Dit = 1) are:

yit = Xitγ
n + θni + ϵnit (80)

Unlike the pooled two-step Heckman estimator, xtheckman does not report estimated

Inverse Mills Ratios (IMRs) or directly quantify the magnitude of selection effects. Instead, it

provides estimated correlations across unobserved components of the outcome and selection

equations, which imply the presence and direction of selection bias.

Table 16 reports results from the xtheckman estimation for non-agricultural workers.

Two specifications are presented, mirroring columns (1) and (2) of Table 14. The model in-

cludes valid exclusion restrictions in the selection equation: age and non-farm business own-

ership. While estimation is computationally demanding, and convergence was not achieved in

either specification, the results still reveal significant correlation in unobserved components,

consistent with selection.

Despite limitations—long run times, convergence issues, and lack of explicit IMR esti-

mates—the results from xtheckman reinforce the key message: under the joint-normality

assumption, significant selection effects are recovered even in a panel framework. These

findings align with those from the pooled Heckman model and underscore the influence of
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distributional assumptions on empirical conclusions regarding comparative advantage and

selection in the agricultural productivity gap.

G.3 Control Function Approach for Panel Data

To further understand the impact of the distributional assumptions on the estimation results,

I deploy the panel selection bias correction developed by Wooldridge (1995) to the first three

waves of the IFLS dataset. This method takes into account the panel structure and uses a

control function with a weaker assumption regarding the unobserved heterogeneity. Under

the same Roy model framework in the panel structure, the key departure of Wooldridge

(1995) from xtheckman is that the distribution of unobserved individual abilities remains

unspecified; at the same time, IMRs are calculated for individual i and each period t. Under

the assumption that the error term in the outcome equation satisfies the conditional mean

assumption (see Equation (85), Wooldridge (1995) exploits the panel structure by regress-

ing the de-meaned log earnings on de-meaned regressors (the mathematical form expressed

in (88)), including the transformed IMRs for selection bias correction.

In this method, each period latent choice variable D∗
it follows (81). Instead, assuming

a bivariate normal distribution of unobserved abilities between sectors for individuals, the

selection equation (81) assumes that the error term νit is independent of xi and normally

distributed, which allows for calculating IMRs for each period. In Equation (82), x′
i refers

to a vector of observed characteristics, including 1 for the intercept, δt0 in Equation (81).

Therefore, Equation (82) is a shorthand expression of Equation (81) using a vector form.

D∗
it = δt0 + xi1δt1 + ...+ xiT δtT + νit (81)

D∗
it = x′

iδt + νit, t = 1, 2, ..., T (82)

In the case that Dit = 1 represents individuals who choose the non-agricultural sector,

Wooldridge (1995) uses the observed characteristics in all periods for a person’s probability

of choosing a non-agricultural sector. This method assumes νit is conditional mean zero and

normally distribute, νit ∼ Normal (0, σ2
t ). Only when the latent choice variable D∗

it > 0, it

will be observed, expressed in (83).
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Dit =

1 if D∗
it > 0

0 otherwise

(83)

Subsequently, in the outcome equation, when Dit = 1, the log earnings will be observed.

Hence, for both agricultural and non-agricultural workers, we can observe their earnings in

the data; however, we don’t know what they would have earned if they had chosen the other

sector instead. For non-agricultural workers, the outcome equation is

yit = θi +Xitγ + uit when Dit = 1 (84)

In Equation (84), yit is observed earning for non-agricultural workers, and the assumption

is that uit is strictly exogenous conditional on unobserved ability θi and observed character-

istics Xit, see Equation (85). Let ρ be the correlation between uit in the outcome equation

and νit in the selection equation, representing the selection bias in the dataset (refer to

Equation (86). Hence, the outcome equation in the expectation has the expression in Equa-

tion (87).

E(uit|θi,xi) = 0 (85)

E(uit|θi,xi, νi) = E(uit|νit) = ρνit (86)

E(yit|θi,xi, νi,Di) = θi +Xitγ + ρνit (87)

When estimating the outcome equation, Wooldridge (1995) first calculates the IMR for

each period in the selection equation and then includes the IMRs as a control function in

the outcome equation to correct for selection bias (mathematical form expressed in (88)). In

estimating the outcome equation, all variables are transformed into demeaned variables (see

Equations (89) and (90)), including IMRs (Equation (91)). This method can deliver con-

sistent estimates while imposing much weaker assumptions on the unobserved components.

By applying this method to the same dataset, the results will provide an assessment of the

selection effect in the sample with a weaker distributional assumption.
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ÿit = Ẍitγ + ρν̈it + eit (88)

ÿit ≡ yit −
1

Ti

T∑
r=1

Diryir (89)

Ẍit ≡ Xit −
1

Ti

T∑
r=1

DirXir (90)

ν̈it ≡ νit −
1

Ti

T∑
r=1

Dirνir (91)

Table 18 represents three different sets of probit estimation as the first stage of Wooldridge’s

selection correction for panel data. The primary purpose of this step is to obtain the IMRs for

each period by assuming the error terms are distributed as a normal distribution. As sector

choice is a binary variable, i.e., either working in the non-agricultural or agricultural sector,

the IMRs can be calculated for both agricultural and non-agricultural workers under the

normal distribution of the error terms in the probit estimation. As Equation (82) shows, the

regressors include all the history of observed characteristics. The exclusion restrictions are

not required in this Wooldridge (1995) approach; however, they help improve the estimation

if available. Let λ(.) represent the Inverse Mills Ratio (IMR) and δ̂t be estimated coefficients

in vector form. Then, IMR for the non-agriculture sector is expressed in Equation (92), and

IMR for agriculture workers is calculated as in Equation (93).

λ(x′
iδ̂t) =

ϕ(x′
iδ̂t)

Φ(x′
iδ̂t)

(92)

λ(x′
iδ̂t) =

−ϕ(x′
iδ̂t)

1− Φ(x′
iδ̂t)

(93)

The first block in Table 18 does not include either log CPI or shock; the second and third

blocks add shock and log CPI, respectively. Each block estimates the selection probability

for each period, which enables the calculation of IMRs for each individual for each period.

Note that shock does not have any predictive power on the sectoral selection (shown in the

second block). This estimation result provides evidential support for the earlier claim that

individuals do not switch sectors in response to shocks. However, shocks will affect the
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earnings in the outcome equation. Since the outcome equation only includes time-varying

variables, the time-invariant variables, such as rural born and gender, can serve as exclusion

restrictions in the selection equation.

With the IMRs acquired, a demeaned IMR will be calculated for each individual and

included in the outcome equation estimation as a control function to correct selection bias.

Table 19 uses IMRs calculated in the first block of Table 18, and the dependent variables

are demeaned log income in the primary job. The left three regressions of Table 19 are for

non-agriculture workers, and the right three ones are for agriculture. For each sector, three

specifications are estimated, from the basic numbers of regressors in Column (1) to gradually

adding log CPI in Column (2) and shock in Column (3); all the variables in the outcome

equations are demeaned, as expressed in Equations (88) to (91). Table 19 shows that the

selection effect is not statistically significant in both sectors, as indicated by the estimated

coefficient of λ (in the first line of the table). Moreover, the signs of the estimated coefficients

are opposed to the results in the pooled dataset using the Heckman two-step method.

Wooldridge (1995) avoids making explicit the joint-normal distribution of individual un-

observed heterogeneity across sectors; instead, this method uses the control function ap-

proach and exploits the panel structure. When applying this method to the three waves of

the IFLS balanced dataset, selection effects are not statistically significant in either sector.

This finding is aligned with the main analysis results in this paper by using Suri (2011)’s ap-

proach. Importantly, this method provides evidence on the consequences of the joint-normal

distribution assumption on unobserved abilities. Pulido and Świecki (2019) use the same

IFLS dataset and find a significant selection effect when imposing a joint-distributional as-

sumption on unobserved components. Examining the first three waves of the IFLS dataset,

the pooled Heckman and xtheckman with the same assumption as Pulido and Świecki

(2019) produce a significant selection effect. Using the same dataset, Wooldridge’s (1995)

method relaxes the assumption of the bivariate normal and applies a weaker control func-

tion on the outcome equation; the estimation results show an insignificant selection effect.

The selection effect varies significantly with the distributional assumptions imposed on the

unobserved heterogeneity. Hence, it is more desirable to impose weaker assumptions on the

individual unobserved abilities when estimating the magnitude of the selection effect. Heck-
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man and Honore (1990) have warned of the consequences of such normal distribution in the

empirical studies, even though this assumption provides meaningful insight in the theoretical

studies.

This paper adopts the empirical approach by Suri (2011) to directly model individual

latent skills in each sector while avoiding explicitly imposing functional forms; instead, this

method exploits the information of each individual’s sectoral choices over time. Unlike the

Wooldridge (1995) approach, the methodology used in this paper estimates the individual

latent comparative advantages through the choice trajectories and panel structure, which is

a more desirable approach when the primary goal is to study the magnitude of the selection

effect empirically. However, this method has its limitations. First, data on earnings and

choices are required for each individual in each period. Second, the variations of earnings

among different groups of choice trajectories need to be sufficiently large for the solutions to

be stable when solving a system of equations. Tjernström et al. (2023) thoroughly discuss

this limitation and provide evaluations. Despite those limitations, this method offers an

attractive solution to the two primary challenges that the research question in this paper

faces.

In this section, I first estimate the selection effect by using one of the prevailing ap-

proaches in the APG literature, TWFE on panel data, on the same dataset for the primary

analysis of the present paper. The estimation results show a significant individual selection

effect on sectoral productivity gaps, which reconciles with the findings in the APG literature

applying this method. While controlling for individual fixed effects on panel data can remove

unobserved heterogeneity, this method is inadequate to model comparative advantages due

to the inability to model sector-specific unobserved individual abilities. As a result, this

method confounds the effect relevant to sector choice with those that are irrelevant. Then, I

present the consequences of the joint-normal distributions on unobserved components in the

estimation results. With the same dataset, under the conventional joint-normal assumption,

canonical Heckman two-step on pooled data and xtheckman both produce significant selec-

tion effect, which is aligned with the finding in Pulido and Świecki (2019). Once relaxing the

joint normal distribution and using a weaker control function approach, Wooldridge’s (1995)

finds no significant selection effect in the same dataset. The empirical approach used in the
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present paper avoids making such an assumption and exploits the information embedded in

the trajectories of choices, which is a more desirable method to study the selection effect on

the APG empirically.
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nonag_main (1) (1) + shock
t = 1 t = 2 t = 3 t  = 1 t = 2 t = 3 t = 1 t = 2 t = 3

nfarmbiz1 0.798 ** 0.514 ** 0.357 ** 0.801 ** 0.513 ** 0.355 ** 0.809 ** 0.522 ** 0.361 **
0.065 0.064 0.063 0.065 0.064 0.063 0.065 0.064 0.063

farmbiz1 -0.702 ** -0.351 ** -0.374 ** -0.708 ** -0.344 ** -0.374 ** -0.681 ** -0.321 ** -0.356 **
0.068 0.068 0.067 0.069 0.068 0.068 0.069 0.069 0.068

ruralborn1 -0.155 * 0.009 -0.142 -0.154 * 0.009 -0.148 * -0.156 * 0.013 -0.136
0.091 0.086 0.088 0.091 0.087 0.088 0.092 0.087 0.088

shock1 -0.006 -0.023 0.027
0.058 0.057 0.057

age1 0.003 -0.001 -0.024 ** 0.003 -0.001 -0.024 ** 0.006 0.001 -0.023 **
0.011 0.011 0.01 0.011 0.011 0.01 0.011 0.011 0.01

gender1 -4.919 0.763 0.739 -4.953 0.77 0.732 -4.986 0.642 0.673
85.969 0.894 0.874 85.321 0.891 0.863 99.891 0.88 0.87

educlevel21 0.215 ** 0.149 ** 0.211 ** 0.217 ** 0.149 ** 0.211 ** 0.228 ** 0.163 ** 0.216 **
0.063 0.062 0.06 0.063 0.062 0.06 0.063 0.063 0.06

marital_status1 -0.213 ** -0.213 ** -0.168 ** -0.206 ** -0.214 ** -0.175 * -0.203 ** -0.203 ** -0.164 **
0.068 0.066 0.065 0.069 0.066 0.065 0.069 0.066 0.065

urban1 0.14 -0.1 0.111 0.139 -0.1 0.117 0.157 -0.077 0.122
0.177 0.177 0.173 0.176 0.177 0.174 0.176 0.177 0.174

wagedwork_main1 0.43 ** 0.054 -0.063 0.434 ** 0.051 -0.069 0.411 ** 0.04 -0.069
0.074 0.074 0.074 0.074 0.074 0.075 0.074 0.074 0.074

ln_hrsworked1_m1 0.186 ** 0.033 -0.048 0.184 ** 0.034 -0.045 0.193 ** 0.043 -0.044
0.054 0.053 0.054 0.055 0.053 0.054 0.055 0.053 0.054

ln_cpi1 -3.22 ** -1.755 -0.951
1.323 1.318 1.291

nfarmbiz2 0.387 ** 0.657 ** 0.275 ** 0.385 ** 0.658 ** 0.278 ** -0.228 ** 0.648 ** 0.273 **
0.065 0.064 0.064 0.065 0.064 0.064 0.068 0.065 0.065

farmbiz2 -0.215 ** -0.585 ** -0.26 ** -0.227 ** -0.581 ** -0.256 ** -0.228 ** -0.6 ** -0.265 **
0.067 0.065 0.066 0.068 0.066 0.067 0.068 0.066 0.067

ruralborn2 -0.038 -0.184 -0.091 -0.033 -0.186 -0.095 -0.052 -0.193 -0.095
0.162 0.151 0.149 0.162 0.151 0.149 0.163 0.152 0.149

shock2 0.074 0.017 0.003
0.056 0.055 0.055

age2 -0.001 0.004 0.028 * -0.002 0.004 0.027 * -0.003 0.003 0.027 *
0.016 0.016 0.015 0.016 0.016 0.015 0.016 0.016 0.015

gender2 4.156 -1.52 * -1.528 * 4.187 -1.526 * -1.521 * 4.21 -1.409 -1.465 *
85.929 0.898 0.877 85.322 0.894 0.867 99.891 0.883 0.873

educlevel22 0.2 ** 0.186 ** 0.063 0.197 ** 0.168 ** 0.064 0.215 ** 0.197 ** 0.068
0.062 0.063 0.06 0.063 0.06 0.06 0.063 0.063 0.06

marital_status2 0.097 0.118 0.021 0.092 0.117 0.013 0.096 0.118 0.023
0.081 0.08 0.078 0.082 0.079 0.078 0.082 0.08 0.078

urban2 -0.555 ** -0.564 ** -0.714 ** -0.561 ** -0.561 ** -0.717 ** -0.521 ** -0.53 ** -0.706 **
0.205 0.203 0.202 0.204 0.203 0.202 0.206 0.204 0.203

wagedwork_main2 0.193 ** 0.561 ** 0.116 0.193 ** 0.561 ** 0.119 0.174 ** 0.536 ** 0.109
0.078 0.075 0.078 0.078 0.075 0.076 0.078 0.076 0.076

ln_hrsworked1_m2 -0.012 0.129 ** 0.015 -0.011 ** 0.128 ** 0.018 -0.016 0.125 ** 0.013
0.051 0.049 0.049 0.051 0.049 0.049 0.051 0.049 0.049

ln_cpi2 2.57 ** 2.04 * 1.291
1.281 1.248 1.223

nfarmbiz3 0.418 ** 0.375 ** 0.73 ** 0.418 ** 0.376 ** -0.729 ** 0.399 ** 0.358 ** 0.719 **
0.062 0.061 0.062 0.062 0.061 0.062 0.062 0.061 0.063

farmbiz3 -0.314 ** -0.336 ** -0.72 ** -0.314 ** -0.336 ** -0.709 ** -0.304 ** -0.326 ** -0.716 **
0.069 0.068 0.066 0.069 0.069 0.066 0.069 0.068 0.066

ruralborn3 -0.085 -0.047 0.062 -0.089 -0.046 0.068 -0.075 -0.038 0.068
0.097 0.095 0.093 0.097 0.095 0.093 0.098 0.096 0.094

shock3 0.013 -0.0146 -0.132 **
0.057 0.056 0.055

age3 -0.004 -0.011 -0.012 -0.004 -0.011 -0.012 -0.005 -0.012 -0.013
0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013

gender3 0 0 0 0 0 0 0 0 0
(omitted) (omotted) (omitted) (omitted) (omitted) (omitted) (omitted) (omitted) (omitted)

educlevel23 -0.026 -0.017 0.092 ** -0.027 -0.017 0.093 ** -0.034 -0.023 0.09 **
0.034 0.034 0.033 0.034 0.034 0.033 0.034 0.034 0.033

marital_status3 -0.055 -0.079 -0.017 -0.059 -0.076 -0.003 -0.062 -0.086 -0.02
0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063

urban3 1.031 ** 1.142 ** 1.079 ** 1.041 ** 1.139 ** 1.073 ** 0.999 ** 1.106 ** 1.069 **
0.123 0.123 0.121 0.124 0.123 0.122 0.125 0.125 0.123

wagedwork_main3 0.17 ** 0.162 ** 0.556 ** 0.172 ** 0.16 ** 0.551 ** 0.164 ** 0.162 ** 0.553 **
0.076 0.075 0.075 0.076 0.075 0.075 0.076 0.075 0.075

ln_hrsworked1_m3 -0.015 0.071 0.208 ** -0.011 0.07 0.204 ** -0.01 0.072 0.207 **
0.047 0.046 0.044 0.047 0.046 0.045 0.047 0.046 0.044

ln_cpi3 -3.217 ** -2.934 ** -1.334 **
0.673 0.66 0.649

cons -0.582 -0.499 -0.378 -0.622 ** -0.485 ** 0.353 ** 19.087 ** 13.148 4.674
0.439 0.426 0.42 0.44 0.428 0.422 5.596 5.561 5.447

N 4,513 4,513 4,513 4,510 4,510 4,510 4,513 4,513 4,513
LR chi2 2,885.33 2,773.61 2,859.02 2,884.73 2,771.46 2,862.19 2,909.10 2,793.80 2,863.38

Pseudo R2 0.494 0.475 0.479 0.494 0.475 0.479 0.498 0.478 0.479

(1) + ln_cpi

Table 18: Wooldridge Probit Estimation (IFLS 1-3 Waves)
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dm_ln_inc1_m
(1) (2) (3) (1) (2) (3)

dm_lambda 0.502 ** 0.334 0.33 -0.208 -0.3 -0.26
0.236 0.227 0.227 0.432 0.425 0.426

dm_age 0.126 ** 0.058 ** 0.057 ** 0.112 ** 0.045 ** 0.042 **
0.005 0.01 0.01 0.008 0.011 0.011

dm_educ 0.098 ** 0.092 ** 0.093 ** 0.076 0.071 0.07
0.023 0.022 0.022 0.065 0.064 0.064

dm_marital -0.055 -0.077 * -0.072 0.176 ** 0.145 * 0.162 **
0.048 0.047 0.047 0.078 0.078 0.08

dm_urban 0.013 0.013 0.011 -0.044 0.005 0.026
0.057 0.055 0.055 0.168 0.165 0.168

dm_wagedwork 0.033 0.022 0.02 0.394 ** 0.371 ** 0.363 **
0.067 0.066 0.066 0.128 0.125 0.125

dm_ln_hrsworked 0.234 ** 0.231 ** 0.23 ** 0.243 ** 0.254 ** 0.247 **
0.048 0.047 0.047 0.077 0.076 0.077

dm_farmbiz -0.049 -0.011 -0.005
0.045 0.044 0.044

dm_nfarmbiz -0.031 -0.08 -0.074
0.117 0.115 0.115

dm_ln_cpi 1.488 ** 1.499 ** 1.652 ** 1.746 **
0.168 0.167 0.21 0.207

dm_shock -0.048 * -0.301 **
0.027 0.067

control for individual fixed effect Y Y Y Y Y Y
clustered Y Y Y Y Y Y

cons 4.05E-08 ** -4.11E-09 0.000011 3.75E-08 ** -3.82E-08 ** -4.49E-08 **
1.72E-09 5.65E-09 7.87E-06 1.99E-09 9.60E-09 9.73E-09

sigma_u 2.78E-07 3.32E-07 0.002 2.67E-07 3.44E-07 3.53E-07
sigma_epsilon 0.828 0.816 0.816 1.598 1.588 1.58E+00

ICC 1.13E-13 1.66E-13 6.67E-06 2.79E-14 4.68E-14 4.97E-14
corr(u_i, X_it) 0 0 0.007 0 0 0

N 8,691 8,691 8,688 4,848 4,848 4,848
Selected 3,343 3,343 3,343 2,063 2,063 2,063

F 117.91 ** 273.16 ** 259.14 36.65 ** 42.09 ** 42.62 **
(8, 3,342) (9, 3,342) (10, 3,342) (8, 2,062) (9, 2062) (10, 2,062)

nonag_main ag_main 

Table 19: Wooldridge Outcome Equation Estimation 1 (IFLS 1-3 Waves)
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dm_ln_inc1_m
(1) (2) (3) (1) (2) (3)

dm_lambda 0.505 ** 0.386 * 0.386 * -0.143 -0.161 -0.116
0.245 0.237 0.237 0.423 0.419 0.42

dm_age 0.126 ** 0.058 ** 0.057 ** 0.111 ** 0.044 ** 0.042 **
0.005 0.01 0.01 0.008 0.011 0.011

dm_educ 0.098 ** 0.094 ** 0.095 ** 0.079 0.076 0.075
0.023 0.022 0.022 0.065 0.065 0.064

dm_marital -0.055 -0.077 * -0.072 0.176 ** 0.147 * 0.164 **
0.048 0.047 0.047 0.078 0.078 0.08

dm_urban 0.015 0.015 0.014 -0.04 0.01 0.031
0.057 0.055 0.055 0.168 0.165 0.168

dm_wagedwork 0.033 0.026 0.024 0.411 ** 0.407 ** 0.401 **
0.067 0.066 0.066 0.126 0.124 0.123

dm_ln_hrsworked 0.234 ** 0.234 ** 0.233 ** 0.248 ** 0.264 ** 0.258 **
0.048 0.047 0.047 0.077 0.076 0.076

dm_farmbiz -0.049 -0.019 -0.013
0.045 0.044 0.044

dm_nfarmbiz -0.021 -0.058 -0.051
0.116 0.114 0.114

dm_ln_cpi 1.49 ** 1.501 ** 1.642 ** 1.737 **
0.167 0.166 0.209 0.207

dm_shock -0.049 * -0.301 **
0.028 0.067

control for individual fixed effect Y Y Y Y Y Y
clustered Y Y Y Y Y Y

cons 4.03E-08 ** -4.38E-09 0.000011 3.78E-08 ** -3.73E-08 ** -4.41E-08 **
1.74E-09 5.62E-09 7.90E-06 1.86E-09 9.66E-09 9.61E-09

sigma_u 2.78E-07 3.33E-07 0.002 2.67E-07 3.43E-07 3.52E-07
sigma_epsilon 0.828 0.816 0.816 1.598 1.588 1.583

ICC 1.13E-13 1.66E-13 6.54E-06 2.79E-14 4.66E-14 4.95E-14
corr(u_i, X_it) 0 0 0.007 0 0 0

N 8,691 8,691 8,688 4,848 4,848 4,848
Selected 3,343 3,343 3,343 2,063 2,063 2,063

F 116.48 ** 272.41 ** 258.68 36.67 ** 41.89 ** 42.62 **
(8, 3,342) (9, 3,342) (10, 3,342) (8, 2,062) (9, 2,062) (10, 2,062)

nonag_main ag_main 

Table 20: Wooldridge Outcome Equation Estimation 2 (IFLS 1-3 Waves)
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